Math, asked by dwivediankita1402, 4 months ago

solve using bernaulli equation 3dy/dx+xy=xy^-2​

Answers

Answered by senboni123456
10

Step-by-step explanation:

We have

3 \frac{dy}{dx}  + xy  = xy^{ - 2}  \\

 \implies \frac{3}{ {y}^{2} }  \frac{dy}{dx}  +  \frac{x}{y}  = x \\

 \frac{1}{y}  = v \\  \implies -  \frac{1}{ {y}^{2} }  \frac{dy}{dx}  =  \frac{dv}{dx}

 \implies - 3 \frac{dv}{dx}  + xv = x \\

 \implies \frac{dv}{dx}   - \frac{x}{3}.v =  \frac{x}{3}  \\

  \implies \: v. {e}^{ -  \frac{ {x}^{2} }{6} }  = -   \int \frac{x}{3} . {e}^{ -  \frac{ {x}^{2} }{6} } dx \\

 \implies \: v {e}^{ -  \frac{ {x}^{2} }{6} }  =   {e}^{ -   \frac{ {x}^{2} }{6}  }  + c \\

 \implies \: v = 1 + c {e}^{ \frac{ {x}^{2} }{6} }  \\

 \implies \frac{1}{y}  = 1 + c {e}^{ -  \frac{ {x}^{2} }{6} }  \\

Similar questions