Solve using Componendo - Dividendo:
[ √(a+x) + √(a-x) ] / [ √(a+x) - √(a-x) ], when x = (2ab) / (b² +1)
Answers
Answered by
1
Answer:
Given: x=2abb2+1
a+x√+a−x√a+x√−a−x√
= a+x√+a−x√a+x√−a−x√×a+x√+a−x√a+x√+a−x√
= (a+x√)2+(a−x√)2+2a+x√.a−x√(a+x√)2−(a−x√)2
= a+x+a−x+2a2−x2√a+x−a+x
= 2a+2a2−x2√2x
= a+a2−x2√x
= a+a2−(2abb2+1)2√2abb2+1
= a+a2−4a2b2(b2+1)2−−−−−−−−−√×b2+12ab
= a+a(b2+1)2−4b2(b2+1)2−−−−−−−−√×b2+12ab
= a[1+1b2+1b4+1+2b2−4b2−−−−−−−−−−−−−−√]×b2+12ab
= b2+1+b4+1−2b2√b2+1×b2+12b
= b2+1+(b2−1)2√2b
= b2+1+b2−12b
= 2b22b
= b
Similar questions