Math, asked by akeertana50, 1 month ago

Solve using cross multiplication.
4x-7y+28=0
7x-5y-9=0
NO SPAM!!

Answers

Answered by YASHRAJGHOSE
3

Answer:

4x-7y+28=0

7x-5y-9=0

Step-by-step explanation:

If you liked my answer plz mark me as the brainliest.

Attachments:
Answered by mathdude500
10

\large\underline{\sf{Solution-}}

➢Given pair of linear equations are

\rm :\longmapsto\:4x - 7y + 28 = 0

and

\rm :\longmapsto\:7x - 5y - 9 = 0

➢can be rewritten as

\rm :\longmapsto\:4x - 7y =  - 28

and

\rm :\longmapsto\:7x - 5y  = 9

➢Using Cross Multiplication method, we get

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  - 7 & \sf   - 28 & \sf 4 & \sf  - 7\\ \\ \sf  - 5 & \sf 9 & \sf 7 & \sf  - 5\\ \end{array}} \\ \end{gathered}

So,

\rm :\longmapsto\:\dfrac{x}{ - 63  -  140}  = \dfrac{y}{ - 196 - 36}  = \dfrac{ - 1}{ - 20 + 49}

\rm :\longmapsto\:\dfrac{x}{ - 203}  = \dfrac{y}{ - 232}  = \dfrac{ - 1}{29}

\rm :\longmapsto\:\dfrac{x}{ - 203}  = \dfrac{y}{ - 232}  = \dfrac{1}{ - 29}

➢On multiply by (- 1), we get

\rm :\longmapsto\:\dfrac{x}{203}  = \dfrac{y}{ 232}  = \dfrac{1}{ 29}

➢On taking first and third member, we get

\rm :\longmapsto\:\dfrac{x}{203}  = \dfrac{1}{ 29}

\rm :\longmapsto\:x = \dfrac{203}{29}

\bf\implies \:x = 7

➢Now, on taking second and third member, we get

\rm :\longmapsto\: \dfrac{y}{ 232}  = \dfrac{1}{ 29}

\rm :\longmapsto\:y = \dfrac{232}{29}

\bf\implies \:y = 8

Verification :-

➢ Consider first equation,

\rm :\longmapsto\:4x - 7y + 28 = 0

➢ On substituting the values of x and y, we get

\rm :\longmapsto\:4 \times 7 - 7 \times 8 + 28 = 0

\rm :\longmapsto\:28 - 56 + 28 = 0

\rm :\longmapsto\:0 = 0

Hence, Verified

➢Consider second equation,

\rm :\longmapsto\:7x - 5y - 9 = 0

➢ On substituting the values of x and y, we get

\rm :\longmapsto\:7 \times 7 - 5 \times 8 - 9 = 0

\rm :\longmapsto\:49 - 40 - 9 = 0

\rm :\longmapsto\:0 = 0

Hence, Verified

Similar questions