Math, asked by aditee02, 1 year ago

solve using cross multiplying method x+y = 7 ,2x-3y=11.

Answers

Answered by sonalmishra
35
thanks.........mark it as a brainielist
Attachments:

aditee02: okay
Answered by mysticd
4

 Let \: pair \:of \: Linear\:equations :\\a_{1}x+b_{1}y+c_{1} = 0 \:and \\a_{2}x+b_{2}y+c_{2} = 0

 \frac{x}{(b_{1}c_{2} - b_{2}c_{1})} = \frac{y}{(c_{1}a_{2} - c_{2}a_{1})} =\frac{1}{(a_{1}b_{2} - a_{2}b_{1})}

 Given \: pair \:of \: Linear \: Equations :

 x + y = 7 \:implies x + y - 7 = 0 \: --(1)

 and \: 2x - 3y = 11 \implies 2x - 3y - 11 = 0

 Here, a_{1} = 1 , b_{1} = 1 , \: c_{1} = -7 \:and \\a_{2} = 2 , b_{2} = -3 , \: c_{2} = -11

 \frac{x}{1(-11) -(-3)(-7)} = \frac{y}{(-7)\times 2 - (-11)\times 1 } = \frac{1}{1\times (-3) - 2 \times 1 }

 \implies \frac{x}{-11 - 21} = \frac{y}{-14 + 11} = \frac{1}{-3- 2 }

 \implies \frac{x}{-32} = \frac{y}{-3} = \frac{1}{-5}

 i ) Now , \frac{x}{-32} = \frac{1}{-5}

 \implies x = \frac{-32}{-5}

 \implies x = \frac{32}{5}

 ii )  \frac{y}{-3} = \frac{1}{-5}

 \implies y = \frac{-3}{-5}

 \implies y = \frac{3}{5}

Therefore.,

 \green { x = \frac{32}{5} \:and \: y = \frac{3}{5}}

•••♪

Attachments:
Similar questions