Solve using derivative: if y=1+x+x²/1-x+x²; find dy/dx
Answers
Answered by
1
Step-by-step explanation:
Here, u(x)=x2+1,v(x)=x+1u(x)=x2+1,v(x)=x+1
using quotient rule,we get
dydx=(x+1)d(x2+1)dx−(x2+1)d(x+1)dx(x+1)2dydx=(x+1)d(x2+1)dx-(x2+1)d(x+1)dx(x+1)2
=(x+1)2x−(x2+1)1(x+1)2=(x+1)2x-(x2+1)1(x+1)2
=2x2+2x−x2−1(x+1)2=x2+2x−1(x+1)2
Similar questions