Math, asked by helper7164, 9 months ago

solve using exponent rules

Attachments:

Answers

Answered by RvChaudharY50
5

Laws of Exponents Rules :-

→ x^1 = x

→ x^0 = 1

→ x^(-1) = 1/x

→ x^m*x^n = x^(m+n)

→ x^m/x^n = x^(m-n)

→ (x^m)^n = x^(mn)

→ (xy)^n = x^n*y^n

→ (x/y)^n = x^n/y^n

→ x^(-n) = (1/x)^n

Solution :-

9) (3^12/3^8)^2

using x^m/x^n = x^(m-n) we get,

→ [ 3^(12 - 8) ]²

→ (3^4)^2

using (x^m)^n = x^(mn) Now,

→ (3)^(4*2)

→ (3)^8

→ 6561 (Ans).

_____________________

10) (a^5 * b^10) / (a^3 * b^8)

using x^m/x^n = x^(m-n) we get,

→ [ a^(5 - 3) * b^(10 - 8) ]

→ a² * b² (Ans.)

Answered by Saby123
11

 \tt{\huge{\orange { -------- }}} R.K

QUESTION :

solve using exponent rules

See the attachment...

SOLUTION :

Rules Of Exponents Used :-

A ^ K / A ^ L = A ^ ( K - L )

Using The Above Rule -

[ 3 ^ 12 / 3 ^ 8 ] ^ 2 = { 3 ^ 4 } ^ 2 = 3 ^ 8 = 6561......[ A ]

[ a ^ 5 × b ^ 10 ] / [ a ^ 3 b ^ 8 ]

=> a ^ { 5 - 3 } × b ^ { 10 - 8 }

=> a^2 × b ^ 2 ............ [ A]

Attachments:
Similar questions