solve using exponent rules
Attachments:
Answers
Answered by
5
Laws of Exponents Rules :-
→ x^1 = x
→ x^0 = 1
→ x^(-1) = 1/x
→ x^m*x^n = x^(m+n)
→ x^m/x^n = x^(m-n)
→ (x^m)^n = x^(mn)
→ (xy)^n = x^n*y^n
→ (x/y)^n = x^n/y^n
→ x^(-n) = (1/x)^n
Solution :-
9) (3^12/3^8)^2
using x^m/x^n = x^(m-n) we get,
→ [ 3^(12 - 8) ]²
→ (3^4)^2
using (x^m)^n = x^(mn) Now,
→ (3)^(4*2)
→ (3)^8
→ 6561 (Ans).
_____________________
10) (a^5 * b^10) / (a^3 * b^8)
using x^m/x^n = x^(m-n) we get,
→ [ a^(5 - 3) * b^(10 - 8) ]
→ a² * b² (Ans.)
Answered by
11
QUESTION :
solve using exponent rules
See the attachment...
SOLUTION :
Rules Of Exponents Used :-
A ^ K / A ^ L = A ^ ( K - L )
Using The Above Rule -
[ 3 ^ 12 / 3 ^ 8 ] ^ 2 = { 3 ^ 4 } ^ 2 = 3 ^ 8 = 6561......[ A ]
[ a ^ 5 × b ^ 10 ] / [ a ^ 3 b ^ 8 ]
=> a ^ { 5 - 3 } × b ^ { 10 - 8 }
=> a^2 × b ^ 2 ............ [ A]
Attachments:
Similar questions