Math, asked by pushpalatha1982pushp, 6 months ago

solve using formula x²+7x+12=0​

Answers

Answered by prince5132
15

GIVEN :-

  • A quadratic equation x² + 7x + 12 = 0.

TO FIND :-

  • The value of x.

SOLUTION :-

 \\   : \implies \displaystyle \sf \: x ^{2} + 7x + 12 = 0 \\  \\

   : \implies \displaystyle \sf \:x =  \frac{ - b \pm  \sqrt{b ^{2} - 4ac }  }{2a}  \\  \\

  • a = 1.
  • b = 7.
  • c = 12.

 \\  \\    : \implies \displaystyle \sf \:x =  \frac{ - 7 \pm \sqrt{(7) ^{2}  - 4 \times 1 \times 12} }{2 \times 1}  \\  \\

: \implies \displaystyle \sf \:x =  \frac{ - 7 \pm \sqrt{49 - 48} }{2}  \\  \\

: \implies \displaystyle \sf \:x =  \frac{ - 7 \pm \sqrt{1} }{2}  \\  \\

: \implies \displaystyle \sf \:x =  \frac{ - 7 - 1}{2} \:  , \: x =  \frac{ - 7 + 1}{2}  \\  \\

: \implies \displaystyle \sf \:x =  \frac{ - 8}{2} \:  , \: x =  \frac{ - 6}{2}  \\  \\

: \implies \underline{ \boxed{ \displaystyle \pink{ \mathfrak{\:x =   - 4 \:  , \: x =   - 3}}}}


EliteSoul: Awesome
prince5132: Thanks :)
spacelover123: Nice :D
prince5132: Thanks ^_^
Anonymous: great
Answered by Anonymous
119

\underline{\underline{\sf{\maltese\:\:Question}}}

\bf{\bigstar\:\:\:\:Solve\:\:for\:\:x\:\::x^2+7x+12=0}

\underline{\underline{\sf{\maltese\:\:Answer}}}

\bf{\bullet\:\:\:x=-3,\:x=-4}

\underline{\underline{\sf{\maltese\:\:Calculations}}}

\bf{x^2+7x+12=0}

Solve with the Quadratic Formula

\sf{Quadratic\:Equation\:Formula:}

\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}

\sf{x_{1,\:2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}}

\mathrm{For\:}\quad a=1,\:b=7,\:c=12

\sf{x_{1,\:2}=\dfrac{-7\pm \sqrt{7^2-4\cdot \:1\cdot \:12}}{2\cdot \:1}}

\implies\sf{x_{1,\:2}=\dfrac{-7\pm \sqrt{49-48}}{2\cdot \:1}}

\implies\sf{x_{1,\:2}=\dfrac{-7\pm \sqrt{1}}{2\cdot \:1}}

\implies\sf{x_{1,\:2}=\dfrac{-7\pm 1}{2\cdot \:1}}

\mathrm{Separate\:the\:solutions}

\implies\sf{\displaystyle x_1=\frac{-7+1}{2\cdot \:1},\:x_2=\frac{-7-1}{2\cdot \:1}}

\implies\sf{\displaystyle x_1=\frac{-6}{2},\: x_2=\frac{-8}{2}}

\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

\boxed{\bf{x=-3,\:x=-4}}


EliteSoul: Great
Similar questions