Math, asked by gyanchandanikrupa7, 4 months ago

solve using identities (11x-13y)(11x+13y)​

Answers

Answered by vadiknema
0

Answer:

Using identity

(x - y)(x + y) =  {x}^{2}  -  {y}^{2}

So answer will be

 {(11x)}^{2}  -  {(13y) }^{2}

111 {x }^{2}  - 169 {y}^{2}

Answered by MrHyper
8

\huge\mathcal\colorbox{lightgreen}{{\color{black}{AnSwEr~↓~↓~}}}

 \bf  \green {To \: solve: } \:  (11x - 13y)(11x + 13y) \\  \bf \green{using \: suitable \: identities} \\  \\  \bf Here \: the \: equation \: can \: be \\  \bf re - arranged \: as:  \\  \underline{ \underline{ \bf(11x + 13y)(11x - 13y)}} \\  \\  \bf Identity \: to \: be \: used :  \\  \bf (a + b)(a - b) = a^{2} -  b^{2}  \\  \bf here:  \: a = 11x \:  \:  \:  \:  \: b = 13y \\  \bf \therefore (11x + 13y)(11x - 13y)  \\  \bf=  {(11x)}^{2}  -  {(13y)}^{2}  \\  \bf =  \green{ \underline{ \boxed{  \bf \: 121 {x}^{2}  - 169 {y}^{2} } \: }}

\huge\green{\textbf{\textsf{Hope~it~helps..!!}}}

Similar questions