Math, asked by vg3301, 1 year ago

solve using identities

Attachments:

Answers

Answered by Anonymous
1
Hi here is your answer.
Attachments:
Answered by Kånhąiyã
3

Given

1.(x + 4)(x + 10) \\ \\  2.(x + 8)(x - 10) \\ \\  3.(3x + 4)(3x - 5) \\ \\  4. \bigg({y}^{2} +  \frac{3}{2}  \bigg) \bigg({y}^{2}  -  \frac{3}{2}  \bigg) \\ \\  5.(3 - 2x)(3 + 2x)

To find

  • the following products.

Using

  • suitable identities.

Solution

No.1

 \large \rm{ \green{1.(x + 4)(x + 10)}} \\ \\   \bigg[  \small{ \frac{ \bf{using \: formula \:  :}}{ \rm(x + a)(x + b) =  {x}^{2}  + (a + b)x + ab} } \bigg] \\  \\  = x(x + 10) + 4(x + 10) \\  =  {x}^{2}  +10x + 4x + (10 \times 4) \\  =  {x}^{2}  + 14x + 40 \\  \\  \large \rm \red{=  {x}^{2}  + 14x + 40}

No.2

 \large \rm{ \green{1.(x + 8)(x  -  10)}} \\ \\   \bigg[  \small{ \frac{ \bf{using \: formula \:  :}}{ \rm(x + a)(x + b) =  {x}^{2}  + (a + b)x + ab} } \bigg] \\  \\ =  (x + 8)[ {x + ( - 10)]}  \\ =  {x}^{2}  + \: [ {8 + ( - 10)]}x  + 8 \times ( - 10)  \\  =  {x}^{2}   + (8 - 10)x - 80 \\  =  {x}^{2}   - 2x  -  80 \\  \\  \large \rm \red{=  {x}^{2}   -  2x  -  80}

No.3

 \large \rm{ \green{3.(3x + 4)(3x  -  5)}} \\ \\   \bigg[  \small{ \frac{ \bf{using \: formula \:  :}}{ \rm(x + a)(x + b) =  {x}^{2}  + (a + b)x + ab} } \bigg] \\  \\ =  (3x + 4)[ {3x + ( - 5)]}  \\ =  {9x}^{2}  + \: [ {4 + ( - 5)]}3x  + 4 \times ( - 5)  \\  =  {9x}^{2}   + ( - 3x) - 20 \\  =  {9x}^{2}   - 3x  -  20 \\  \\  \large \rm \red{=  {9x}^{2}   -  3x  -  20}

No.4

 \large \rm{ \green{4. \bigg({y}^{2} +  \frac{3}{2}  \bigg) \bigg({y}^{2}  -  \frac{3}{2}  \bigg)}} \\ \\   \bigg[  \small{ \frac{ \bf{using \: formula \:  :}}{ \rm(a + b)(a - b) =  {a}^{2} -  {b}^{2}  } } \bigg] \\  \\ =   {y}^{2} \bigg( {y}^{2}  -  \frac{3}{2}  \bigg) +  \frac{3}{2}  \bigg( {y}^{2}  -  \frac{3}{2}  \bigg) \\  = { \bigg( {y}^{2}  \bigg)}^{2}  -  \frac{3 {y}^{2} }{2}  +  \frac{ {3y}^{2} }{2} -  \bigg( \frac{3}{2}  \bigg) \\  = { \bigg( {y}^{2}  \bigg)}^{2}  -  \cancel \frac{3 {y}^{2} }{2}  +  \cancel \frac{ {3y}^{2} }{2} -  \bigg( \frac{3}{2}  \bigg) \\ =   {y}^{4}  -  \frac{9}{4} \\   \\  \large \rm \red{=   {y}^{4}  -  \frac{9}{4} }

No.5

 \large \rm{ \green{5. (3-2x)(3+2x)}} \\ \\   \bigg[  \small{ \frac{ \bf{using \: formula \:  :}}{ \rm(a + b)(a - b) =  {a}^{2} -  {b}^{2}  } } \bigg] \\  \\ = 3(3 - 2x) + 2x(3 - 2x) \\  = 9 - x + x -  {4x}^{2}  \\  = 9 - \cancel x + \cancel x -  {4x}^{2} \\  = 9 -  {4x}^{2}  \\  \\  \large \rm \red{ \:  = 9 -  {4x}^{2} }

Similar questions