solve using identities ok!!
if x+y=12 and xy=27, find the value of x³+y³
Answers
Answered by
2
Answer:
(x+y)³= x³+y³+3xy(x+y)
(12)³=x³+y³+3(27)(12)
1728=x³+y³+972
x³+y³=1728-972
x³+y³=756
Answered by
64
Answer:
Given:-
x + y = 12
xy = 27
To find:-
We know that,
Thus, x^3 + y^3 = 756.
Some useful indentities:-
→ (a + b)^2 = a^2 + 2ab + b^2
→ (a – b)^2 = a^2 – 2ab + b^2
→ a^2 – b^2 = (a + b) (a – b)
→ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
→ (a + b – c)^2 = a^2 + b^2 + c^2 + 2ab – 2bc – 2ca
→ (a – b – c)^2 = a^2 + b^2 + c^2 – 2ab + 2bc – 2ca
→ (a + b)^3 = a^3 + b^3 + 3ab(a + b)
→ (a – b)^3 = a^3 – b^3 – 3ab(a – b)
→ (a^3 + b^3) = (a + b) (a^2 – ab + b^2)
→ (a^3 – b^3) = (a – b) (a^2 + ab + b^2)
Similar questions