Math, asked by bhayok18, 2 months ago

solve using identity​

Attachments:

Answers

Answered by 12thpáìn
5

  \footnotesize \bf{1  \cancel{ .} Simplify \:  the \:  Following}\\

  •  \small\sf  \left(  \dfrac{x}{2}  +  \dfrac{y}{3}  \right)^{3}  -  \left(  \dfrac{x}{2}   -   \dfrac{y}{3}  \right)^{3} \\

 \footnotesize{ \sf By  \: Using \:  Identity \: } \bf _{  \mapsto \:  \:    (a - b) ^{3}  = {a}^{3}   - {b}^{3} - 3 {a}^{2} b+ 3 a{b}^{2}  }

{ \:  \:  \:  \sf \:  \:  :  \implies \:  { \left( \dfrac{x}{2}  \right)}^{3}    +  {\left( \dfrac{y}{3}\right)}^{3}  + 3 \times  {\left(\dfrac{x}{2}\right)}^{2} \times \dfrac{y}{3} + 3  \times\dfrac{x}{2}  \times {\left(\dfrac{y}{3}\right)}^{2}  -   \bigg\{{ \left( \dfrac{x}{2}  \right)}^{3}   - {\left( \dfrac{y}{3}\right)}^{3} - 3 \times  {\left(\dfrac{x}{2}\right)}^{2} \times \dfrac{y}{3} + 3  \times\dfrac{x}{2}  \times {\left(\dfrac{y}{3}\right)}^{2}  \bigg\} }

{{ \:  \:  \:  \sf \:  \:  :  \implies \:  { \left( \dfrac{x}{2}  \right)}^{3}    +  { \dfrac{ {y}^{3} }{27}} +  \dfrac{3 {x}^{2}y }{ {2}^{2} \times 3 }   +  \dfrac{3x {y}^{2} }{2 \times  { 3}^{2} }    -  \bigg\{  \left( \dfrac{x}{2}  \right)}^{3} \sf     -   { \dfrac{ {y}^{3} }{27}}  -   \dfrac{3 {x}^{2}y }{ {2}^{2} \times 3 }   +  \dfrac{3x {y}^{2} }{2 \times  { 3}^{2}}\bigg\} }

{{ \:  \:  \:  \sf \:  \:  :  \implies \:  {  \cancel{\left( \dfrac{x}{2}  \right)}^{3} }   +  { \dfrac{ {y}^{3} }{27}} +  \dfrac{3 {x}^{2}y }{ {2}^{2} \times 3 }   +  \cancel{ \dfrac{3x {y}^{2} } {2 \times  { 3}^{2}}}      -    \cancel{\left( \dfrac{x}{2}  \right)}}^{3} \sf      +    { \dfrac{ {y}^{3} }{27}}   +  \dfrac{3 {x}^{2}y }{ {2}^{2} \times 3 }    - \cancel{  \dfrac{3x {y}^{2} }{2 \times  { 3}^{2}} }}

{{ \:  \:  \:  \sf \:  \:  :  \implies \:       { \dfrac{ {y}^{3} }{27}}  + \dfrac{3 {x}^{2}y }{ 12 }}} \sf            +    { \dfrac{ {y}^{3} }{27}}   +  \dfrac{3 {x}^{2}y }{ 12  }

{{ \:  \:  \:  \sf \:  \:  :  \implies \:       { \dfrac{ 2{y}^{3} }{27}}  + \dfrac{6 {x}^{2}y }{ 12 }}}

{{ \:  \:  \:  \sf \:  \:  :  \implies \:       { \dfrac{ 2{y}^{3} }{27}}  + \dfrac{ {x}^{2}y }{ 2 }}} \\  \\  \\

{\tt  \left(  \dfrac{x}{2}  +  \dfrac{y}{3}  \right)^{3}  -  \left(  \dfrac{x}{2}   -   \dfrac{y}{3}  \right)^{3}  = \bf { \dfrac{ 2{y}^{3} }{27}}  + \dfrac{ {x}^{2}y }{ 2 }}\\\\\\

  • \begin{gathered}\blue{\begin{gathered}\tiny\begin{gathered}\small{\small{\small{\small{\small{\small{\small{\small{\small{\small{\begin{gathered}\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\red{ \bigstar} \: \underline{\bf{\orange{More \: Useful \: Formula}}}\\ {\boxed{\begin{array}{cc}\dashrightarrow \sf(a + b)^{2} = {a}^{2} + {b}^{2} + 2ab \\\\\dashrightarrow \sf(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab \\\\\dashrightarrow \sf(a + b)(a - b) = {a}^{2} - {b}^{2} \\\\\dashrightarrow \sf(a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b) \\\\ \dashrightarrow\sf(a - b) ^{3} = {a}^{3} - b^{3} - 3ab(a - b) \\ \\\dashrightarrow\sf a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab) \\\\\dashrightarrow \sf a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab \\\\\dashrightarrow \sf{a²+b²=(a+b)²-2ab}\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}}}}}}}}}}\end{gathered}\end{gathered}}\end{gathered}
Similar questions