Math, asked by rudrakshmehra32, 9 months ago

solve using identity
{(3a - 5b)}^{3}


Answers

Answered by amansharma264
1

Answer:

 \large \bold \orange{ \underline{question}} \\  \\ \implies \bold{solve \:  \: using \:  \: identity \:  = (3a - 5b) {}^{3} } \\  \\ \implies \bold \green{formula \:  \:  \: of \:  \:  \: (a - b) {}^{3} } \\  \\ \implies \bold  \blue  {\boxed{(a - b) {}^{3} =  {a}^{3} - 3 {a}^{2}b + 3a {b}^{2} -  {b}^{3}     }} \\  \\ \implies \bold{(3a - 5b) {}^{3} } \\  \\ \implies \bold{(3a) {}^{3} } - 3(3a) {}^{2}5b + 3(3a)(5b) {}^{2} - (5b) {}^{3}   \\  \\  \implies \bold{27 {a}^{3} - 135 {a}^{2}b + 225a {b}^{2}  - 125 {b}^{3}    } \\  \\ \implies \bold \green{ \underline{related \:  \: formula}} \\  \\ \implies \bold  {1) = (a + b) {}^{3} = a {}^{3} + 3 {a}^{2}b + 3ab {}^{2} +  {b}^{3}    } \\  \\ \implies \bold{2) = (a - b) {}^{3} =  {a}^{3} - 3 {a}^{2}b + 3a {b}^{2} -  {b}^{3}     } \\  \\ \implies \bold{3) = ( {a}^{3} -  {b}^{3}) = (a - b)( {a}^{2} + ab +  {b}^{2} )   } \\  \\ \implies \bold{4) = ( {a}^{3} +  {b}^{3} ) =(a + b)( {a}^{2} - ab +  {b}^{2}  )  }

Answered by Anonymous
0

QUESTION:

solve using identity

( {3a - 5b})^{3}

ANSWER:

We use the identity here;

( {x - y})^{3}

the expansion of the identity is;

\huge\organe{{x}^{3}  -  {y}^{3}  - 3xy(x - y)}

now come to main question;

Here;

3a = x

5b = y

using the identity;

 {3a}^{3}  -  {5b}^{3}  - 3 \times 3a \times 5b(3a - 5b) \\  27 {a}^{3}   - 125 {b}^{3}  - 45ab(3a - 5b)

27 {a}^{3}  - 125 {b}^{3}  - 135 {a}^{2} b + 225 a{b}^{2}

plz Mark as brainliest

Similar questions