Math, asked by priyanshisrivastava7, 1 month ago

solve using long division method: 3x³-5x²-11x-3 by (x-3) and verify it also using this formula : D=d×Q+R ​

Answers

Answered by divyasingh016787
0

Answer:

Step-by-step explanation:

3x³-5x²-11x-3

=. 3x²(x-3)+4x(x-3)+1(x-3)

= (x-3) (3x²+4x+1)

if devide x-3 then result will be (3x²+4x+1)

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:Dividend =  {3x}^{3} -  {5x}^{2} - 11x - 3

\rm :\longmapsto\:Divisor = x - 3

So, Using Long Division, we have

 \red{\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: 3{x}^{2}  +  4x  +  1\:\:}}}\\ {\underline{\sf{x - 3}}}& {\sf{\: 3{x}^{3}  -  {5x}^{2} - 11x  - 3 \:\:}} \\{\sf{}}& \underline{\sf{\:\:   - 3 {x}^{3} + 9{x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \: 4{x}^{2} - 11x  - 3  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\:  - 4{x}^{2} +  12x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  x  - 3  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \: \: - x  + 3\:\: \:  \: }} \\ {\underline{\sf{}}}& {\sf{\:\: \:    \:  0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}}

Hence,

We get

\rm :\longmapsto\:Quotient =  {3x}^{2} + 4x  + 1

and

\rm :\longmapsto\:Remainder = 0

Now, we have

\rm :\longmapsto\:Dividend =  {3x}^{3} -  {5x}^{2} - 11x - 3

\rm :\longmapsto\:Divisor = x - 3

\rm :\longmapsto\:Quotient =  {3x}^{2} + 4x  + 1

\rm :\longmapsto\:Remainder =  0

Now, Consider,

\rm :\longmapsto\:Divisor \times Quotient + Remainder

\rm \:  =  \:(x - 3)( {3x}^{2} + 4x   +  1)

\rm \:  =  \:{3x}^{3} + 4 {x}^{2}   + x -  {9x}^{2} - 12x   - 3

\rm \:  =  \: {3x}^{3} -  {5x}^{2} - 11x - 3

\rm \:  =  \:Dividend

Hence, Verified

Similar questions