Math, asked by khushi15686, 10 days ago

Solve using method of factorization
x +  \frac{1}{x}  = 25 \frac{1}{25}

Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given equation is

\rm \: x + \dfrac{1}{x} = 25\dfrac{1}{25}  \\

can be rewritten as

\rm \: \dfrac{ {x}^{2}  + 1}{x} = 25 + \dfrac{1}{25}  \\

\rm \:  {x}^{2} + 1 = 25x + \dfrac{1}{25}x \\

can be rewritten as

\rm \:  {x}^{2} + 1 - 25x - \dfrac{1}{25}x  = 0\\

can be re-arranged as

\rm \:  {x}^{2} - 25x - \dfrac{1}{25}x  + 1 = 0\\

can be further rewritten as

\rm \:  {x}^{2} - 25x - \dfrac{1}{25}x  + 25 \times  \dfrac{1}{25}  = 0\\

\rm \: x(x - 25) - \dfrac{1}{25}(x - 25) = 0 \\

\rm \: (x - 25)\bigg(x - \dfrac{1}{25}  \bigg) = 0 \\

\rm\implies \:x = 25 \:  \: or \:  \: x = \dfrac{1}{25}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Short Cut trick :-

\boxed{\sf{  \:\rm \: If \: x +  \frac{1}{x} =  y\frac{1}{y}  \:  \:  \:  \: then \: x = y \: or \: x =  \frac{1}{y} \:  \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by maheshtalpada412
3

Step-by-step explanation:

This is a simple, short and memorable way.

 \pmb{\[ \begin{array}{l} \color{darkviolet} \tt x+\dfrac{1}{x}=25 \dfrac{1}{25} \\ \\  \tt \Rightarrow  \red x+ \orange{\dfrac{1}{x}}= \red{25}+ \orange{\dfrac{1}{25}} \\ \\ \color{darkviolet} \tt \left(\because a \dfrac{b}{c}=a+\dfrac{b}{c}\right) \end{array} \]}

on comparing, we get:-

 \color{magenta}\[ \begin{array}{l} \tt \implies x=25 \:  \:  \:  \:  \: and \\ \implies \tt x= \dfrac{1}{25}  \end{array} \]

Similar questions