Math, asked by gathi, 1 year ago

solve using properties
pls help me with this sum​

Attachments:

Answers

Answered by AbhijithPrakash
11

Answer:

\dfrac{2}{5}\times \dfrac{-3}{7}-\dfrac{1}{14}-\dfrac{3}{7}\times \dfrac{3}{5}=-\dfrac{1}{2}\quad \left(\mathrm{Decimal:\quad }\:-0.5\right)

Step-by-step explanation:

\dfrac{2}{5}\times \dfrac{-3}{7}-\dfrac{1}{14}-\dfrac{3}{7}\times \dfrac{3}{5}

\dfrac{2}{5}\times \dfrac{-3}{7}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{-a}{b}=-\dfrac{a}{b}

=\dfrac{2}{5}\left(-\dfrac{3}{7}\right)

\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a

=-\dfrac{2}{5}\times \dfrac{3}{7}

\mathrm{Multiply\:fractions}:\quad \dfrac{a}{b}\times \dfrac{c}{d}=\dfrac{a\:\times \:c}{b\:\times \:d}

=-\dfrac{2\times \:3}{5\times \:7}

\mathrm{Multiply\:the\:numbers:}\:2\times \:3=6

=-\dfrac{6}{5\times \:7}

\mathrm{Multiply\:the\:numbers:}\:5\times \:7=35

=-\dfrac{6}{35}

=-\dfrac{6}{35}-\dfrac{1}{14}-\dfrac{3}{7}\times \dfrac{3}{5}

\dfrac{3}{7}\times \dfrac{3}{5}

\mathrm{Multiply\:fractions}:\quad \dfrac{a}{b}\times \dfrac{c}{d}=\dfrac{a\:\times \:c}{b\:\times \:d}

=\dfrac{3\times \:3}{7\times \:5}

\mathrm{Multiply\:the\:numbers:}\:3\times \:3=9

=\dfrac{9}{7\times \:5}

\mathrm{Multiply\:the\:numbers:}\:7\times \:5=35

=\dfrac{9}{35}

=-\dfrac{6}{35}-\dfrac{1}{14}-\dfrac{9}{35}

\mathrm{Combine\:the\:fractions\:}-\dfrac{6}{35}-\dfrac{9}{35}

\mathrm{Apply\:rule}\:\dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}

=\dfrac{-6-9}{35}

\mathrm{Subtract\:the\:numbers:}\:-6-9=-15

=\dfrac{-15}{35}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{-a}{b}=-\dfrac{a}{b}

=-\dfrac{15}{35}

\mathrm{Cancel\:the\:common\:factor:}\:5

=-\dfrac{3}{7}

=-\dfrac{3}{7}-\dfrac{1}{14}

\mathrm{Least\:Common\:Multiplier\:of\:}7,\:14

Least\:Common\:Multiplier\:\left(LCM\right)

  • \mathrm{The\:LCM\:of\:}a,\:b\mathrm{\:is\:the\:smallest\:positive\:number\:that\:is\:divisible\:by\:both\:}a\mathrm{\:and\:}b

\mathrm{Prime\:factorization\:of\:}7:\quad 7

\mathrm{Prime\:factorization\:of\:}14:\quad 2\times \:7

\mathrm{Multiply\:each\:factor\:the\:greatest\:number\:of\:times\:it\:occurs\:in\:either\:}7\mathrm{\:or\:}14

=7\times \:2

\mathrm{Multiply\:the\:numbers:}\:7\times \:2=14

=14

\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}

\mathrm{Multiply\:each\:numerator\:by\:the\:same\:amount\:needed\:to\:multiply\:its} \mathrm{corresponding\:denominator\:to\:turn\:it\:into\:the\:LCM}\:14

\mathrm{For}\:\dfrac{3}{7}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:2

\dfrac{3}{7}=\dfrac{3\times \:2}{7\times \:2}=\dfrac{6}{14}

=-\dfrac{6}{14}-\dfrac{1}{14}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}

=\dfrac{-6-1}{14}

\mathrm{Subtract\:the\:numbers:}\:-6-1=-7

=\dfrac{-7}{14}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{-a}{b}=-\dfrac{a}{b}

=-\dfrac{7}{14}

\mathrm{Cancel\:the\:common\:factor:}\:7

=-\dfrac{1}{2}

Similar questions