Math, asked by hitarthbhatt2311, 10 months ago

Solve using "Quadratic formula"​

Attachments:

Answers

Answered by Skyllen
2

 \sf \implies \:  \dfrac{x + 1}{2x + 5}  =  \dfrac{x + 3}{3x + 4}  \\  \\  \sf \to \:( x + 1)(3x + 4) = (x + 3)(2x + 5) \\  \\  \sf \to \: 3x {}^{2}  + 4x + 3x + 4 = 2x {}^{2}  + 5x + 6x + 15 \\  \\  \sf \to \: x {}^{2}  + 7x - 11x = 15 - 4 \\  \\  \sf \to \: x {}^{2}  - 4x = 11 \\  \\ \to\boxed{x {}^{2}  - 4x - 11 = 0}

By comparing this equation by ax² + bx + c = 0,

  • a = 1
  • b = -4
  • c = -11

 \sf \: x =  \dfrac{ - b +   \sqrt{b {}^{2} - 4ac } }{2a}  \\  \\ x =  \dfrac{ - ( - 4) +  \sqrt{( - 4) {}^{2} - 4(1)( - 11) } }{2(1)}    \\   \\  \implies \blue{\boxed {x = \dfrac{4+ 2\sqrt{15}}{2}}} \\

Similarly,

 \implies \blue{\boxed {x = \dfrac{4- 2\sqrt{15}}{2}}} \\

Simplify the values of x, we get

x = 2 + √15 and 2 - √15

Similar questions