Math, asked by khushi15686, 4 days ago

solve using quadratic formula

 {abx}^{2}  + ( {b}^{2}  - ac)x - bc = 0 \\

Answers

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm \:  {abx}^{2} + ( {b}^{2} - ac)x - bc = 0 \\

We know,

The roots of the quadratic equation Ax² + Bx + C = 0, using quadratic formula is given by

\boxed{\sf{  \:x =  \frac{ - B \:  \pm \:  \sqrt{D} }{2A}  \: }} \\  \\ \rm \: where \: D = {B}^{2}  - 4AC \\

Now, on comparing the given equation with Ax² + Bx + C = 0, we get

\rm \: A = ab \\

\rm \: B =  {b}^{2} - ac \\

\rm \: C =  - bc \\

Now, Consider Discriminant,

\rm \: D =  {B}^{2}  - 4AC \\

On substituting the values of A, B and C, we get

\rm \: =  \:  {( {b}^{2}  - ac)}^{2} - 4(ab)( - bc) \\

\rm \: =  \:  {b}^{4} +  {a}^{2} {c}^{2} -   {2b}^{2}ac  +  4 {b}^{2}ac \\

\rm \: =  \:  {b}^{4} +  {a}^{2} {c}^{2} +    {2b}^{2}ac \\

\rm \:  =  \:  {( {b}^{2} + ac)}^{2}  \\

So,

\rm\implies \:D\rm \:  =  \:  {( {b}^{2} + ac)}^{2}  \\

Now, using quadratic formula, we have

\rm \: x =  \dfrac{ - B \:  \pm \:  \sqrt{D} }{2A}

So, on substituting the values of B, A and D, we get

\rm \: x =  \dfrac{ - ( {b}^{2} - ac)  \:  \pm \:  \sqrt{( {b}^{2}  + ac)^{2} } }{2ab}  \\

\rm \: x =  \dfrac{ - ( {b}^{2} - ac)  \:  \pm \:  ( {b}^{2}  + ac)}{2ab}  \\

\rm \: x = \dfrac{ - ( {b}^{2} - ac)+( {b}^{2}  + ac)}{2ab} \:  \: or \:  \: x = \dfrac{ - ( {b}^{2} - ac) - ( {b}^{2}  + ac)}{2ab}  \\

\rm \: x = \dfrac{ - {b}^{2} + ac+{b}^{2}  + ac}{2ab} \:  \: or \:  \: x = \dfrac{ - {b}^{2} +  ac -{b}^{2} -  ac}{2ab}  \\

\rm \: x = \dfrac{ 2ac}{2ab} \:  \: or \:  \: x = \dfrac{ - 2{b}^{2}}{2ab}  \\

\rm\implies \:\rm \: x = \dfrac{ c}{b} \:  \: or \:  \: x = \dfrac{ -{b}}{a}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by maheshtalpada412
15

Step-by-step explanation:

 \color{olive}\[ \begin{array}{l} \text { Here, } \tt a b x^{2}+\left(b^{2}-a c\right) x-b c=0 \\ \\  \tt x=\dfrac{-B \pm \sqrt{\left(B^{2}-4 A C\right)}}{2 A} \\ \\  \tt \Rightarrow x=\dfrac{-\left(b^{2}-a c\right) \pm \sqrt{\left(b^{2}-a c\right)^{2}-4 a b(-b c)}}{2 a b} \\  \\  \tt\Rightarrow x=\dfrac{-\left(b^{2}-a c\right) \pm \sqrt{\left(b^{2}-a c\right)^{2}+4 a b^{2} c}}{2 a b} \\  \\  \tt\Rightarrow x=\dfrac{-\left(b^{2}-a c\right) \pm \sqrt{b^{4}-2 a b^{2} c+a^{2} c^{2}+4 a b^{2} c}}{2 a b} \\ \\  \tt \Rightarrow x=\dfrac{-\left(b^{2}-a c\right) \pm \sqrt{\left(b^{2}+a c\right)^{2}}}{2 a b} \\ \\  \tt \Rightarrow x=\dfrac{-\left(b^{2}-a c\right)+\left(b^{2}+a c\right)}{2 a b}, x=\dfrac{-\left(b^{2}-a c\right)-\left(b^{2}+a c\right)}{2 a b} \\ \\  \tt \Rightarrow x=\dfrac{2 a c}{2 a b} \quad, \quad  \quad x = \dfrac{-2 b^{2}}{2 a b} \\ \\  \tt\Rightarrow x =  \dfrac{c}{b}  \qquad,  \qquad x =  -  \dfrac{b}{a} \end{array} \]

Similar questions