CBSE BOARD X, asked by jaindishi38, 28 days ago

Solve using quadratic formula
 \sqrt{ \frac{x}{x - 3} }  +  \sqrt{ \frac{x - 3}{x} }  =  \frac{5}{2}
solve the quadratic equation ​

Answers

Answered by SandySanjeet
52

Answer ⤴️

Blood plasma is a yellowish liquid component of blood that holds the blood cells, proteins and other constituents of whole blood in suspension. It makes up about 55% of the body's total blood volume. It is the intravascular part of extracellular fluid

Attachments:
Answered by MrImpeccable
42

ANSWER:

To Solve:

\:\:\bullet\:\:\sqrt{\dfrac{x}{x-3}\,}+\sqrt{\dfrac{x-3}{x}\,}=\dfrac{5}{2}

Solution:

METHOD 1:

We are given that,

\implies\sqrt{\dfrac{x}{x-3}\,}+\sqrt{\dfrac{x-3}{x}\,}=\dfrac{5}{2}

Squaring both sides,

\implies\left(\sqrt{\dfrac{x}{x-3}\,}+\sqrt{\dfrac{x-3}{x}\,}\right)^2=\left(\dfrac{5}{2}\right)^2

\implies\left(\sqrt{\dfrac{x}{x-3}\,}\right)^2+\left(\sqrt{\dfrac{x-3}{x}\,}\right)^2+2\left(\sqrt{\dfrac{x}{x-3}\,}\right)\left(\sqrt{\dfrac{x-3}{x}\,}\right)=\dfrac{5^2}{2^2}

\implies\dfrac{x}{x-3}+\dfrac{x-3}{x}+2\left(\sqrt{\dfrac{x}{x-3}\times\dfrac{x-3}{x}\,}\right)=\dfrac{25}{4}

\implies\dfrac{x}{x-3}+\dfrac{x-3}{x}+2=\dfrac{25}{4}

\implies\dfrac{x^2+(x-3)^2}{x(x-3)}=\dfrac{25}{4}-2

\implies\dfrac{x^2+x^2+9-6x}{x^2-3x}=\dfrac{25-8}{4}

\implies\dfrac{2x^2-6x+9}{x^2-3x}=\dfrac{17}{4}

\implies4(2x^2-6x+9)=17(x^2-3x)

\implies8x^2-24x+36=17x^2-51x

\implies8x^2-24x+36-17x^2+51x=0

\implies-9x^2+27x+36=0

\implies-9(x^2-3x-4)=0

\implies x^2-3x-4=0

\implies x^2-4x+x-4=0

\implies x(x-4)+1(x-4)=0

\implies (x-4)(x+1)=0

Hence,

\implies x=4,\:-1

\\

METHOD 2:

We are given that,

\implies\sqrt{\dfrac{x}{x-3}\,}+\sqrt{\dfrac{x-3}{x}\,}=\dfrac{5}{2}

Let us assume that,

\implies\sqrt{\dfrac{x}{x-3}\,}=t

So,

\implies\sqrt{\dfrac{x}{x-3}\,}+\sqrt{\dfrac{x-3}{x}\,}=\dfrac{5}{2}

\implies\sqrt{\dfrac{x-3}{x}\,}=\dfrac{1}{t}

Hence,

\implies t+\dfrac{1}{t}=\dfrac{5}{2}

\implies \dfrac{t^2+1}{t}=\dfrac{5}{2}

\implies 2(t^2+1)=5t

\implies 2t^2+2-5t=0

\implies 2t^2-5t+2=0

\implies 2t^2-4t-t+2=0

\implies 2t(t+2)+1(t+2)=0

\implies (2t+1)(t+2)=0

So,

\implies t=\dfrac{-1}{2},\:-2

We had,

\implies\sqrt{\dfrac{x}{x-3}\,}=t

Case 1: Taking t = -1/2

\implies\sqrt{\dfrac{x}{x-3}\,}=t

\implies\sqrt{\dfrac{x}{x-3}\,}=\dfrac{-1}{2}

Squaring both sides,

\implies\dfrac{x}{x-3}=\dfrac{1}{4}

\implies4x=x-3

\implies4x-x=-3

\implies3x=-3

\implies x=-1

Case 2: Taking t = -2

\implies\sqrt{\dfrac{x}{x-3}\,}=t

\implies\sqrt{\dfrac{x}{x-3}\,}=-2

Squaring both sides,

\implies\dfrac{x}{x-3}=4

\implies x=4x-12

\implies12=4x-x

\implies3x=12

\implies x=4

Hence,

\implies x=4,\:-1

Therefore from both methods,

\implies\bf\large x=4,\:-1

Similar questions