Math, asked by vikas0622, 6 months ago

Solve using substitution method and Elimination x+2y=4; 2x+y=5

Answers

Answered by King412
51

{\huge{\mathfrak{\underbrace{\purple{Answer:-}}}}}

 \sf \: x+2y=4; 2x+y=5

{\huge{\mathfrak{\underbrace{\purple{Given:-}}}}}

 \star \:  \sf \: x+2y=4........  \fbox{ equation \: 1}\\\star \:   \sf 2x+y=5.........\fbox{ equation \:2}\\

{\huge{\mathfrak{\underbrace{\purple{Solution:-}}}}}

 \sf \: 1st \: we \: have \: to \: multiply \: equation \: 2  \\  \tt by \: 2

 \tt \therefore \: 2(2x + y = 5) \\  \implies \tt \:  4x + 2y = 10...... \fbox{equation \: 3} \\ \\   \tt \: now \: subtract \: equation \: 1 \: and \: 3.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt4x + 2y = 10 \\  \:  \:  \:  \:  \:  \:  \: -   \:  \:  \:  \tt \: x - 2y = ( - 4) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt2x = 6 \\ \:  \:  \:  \:  \:  \:  \:   \longrightarrow \tt \: x =  \frac{6}{2}  \\  \:  \:  \:  \:  \:  \:  \: \longrightarrow \fbox{ \tt \: x = 3}</p><p>

 \tt \: put \: the \: value \: of \: x \: in \: equation  \\  \tt1st

 \tt \: x + 2y = 4 \\  \tt  \:  \: \implies3 + 2y = 4 \\  \:  \:  \tt \implies2y = 4 - 3 \\  \:  \:  \tt \implies \: y =  \frac{1}{2}

  \huge\mathfrak \red{hope \: its \: helpful}

  \huge\mathfrak \green{mark \: me \: as \: brainliest}

Similar questions