Math, asked by shehadshajahan, 5 months ago

solve using suitable identity (6x+5) (6x+7)​

Answers

Answered by dedrichochstetler
2

Answer:

42

Step-by-step explanation:

Answered by suraj5070
142

 \huge {\boxed {\mathbb {QUESTION}}}

solve using suitable identity (6x+5) (6x+7)

 \huge {\boxed {\mathbb {ANSWER}}}

 (6x+5) (6x+7)

 Identity=\\(x+a) (x+b) ={x}^{2}+(a+b)x+ab

 x=6x\\a=5\\b=7

 Substitute \:the\:values

 \implies (6x+5)(6x+7)={(6x)}^{2}+(5+7)6x+(5)(7)

 \implies 36{x}^{2}+(12)6x+35

 \implies{\boxed{\boxed {36{x}^{2}+72x+35}}}

 By\: factorisation

\implies 36{x}^{2}+30x+42x+35=0

 \implies6x(6x+5)+7(6x+5)=0

 \implies(6x+5)(6x+7)=0

 \implies6x+5=0\:or\:6x+7=0

 \implies6x=-5\:or\:6x=-7

\implies{\boxed {\boxed {x=\frac{-5}{6}\:or\:x=\frac{-7}{6}}}}

 \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 Identities

 {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}

 {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}

 (a+b) (a-b) ={a}^{2}-{b}^{2}

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions