Math, asked by unkownu459, 3 months ago

Solve using suitable identity.

(x + 3z)²​

Answers

Answered by FIREBIRD
11

Answer:

 {x}^{2}  +  {9z}^{2}  + 6xz

Step-by-step explanation:

We Have :-

( \: x + 3 {z} \: )^{2}

To Find :-

Its value using suitable identity

Identity Used :-

( \: a + b \: )^{2}  =   {a}^{2}  +  {b}^{2}  + 2ab

Solution :-

( \: x + 3 {z} \: )^{2}  \\  \\ using \: identity \\  \\  {x}^{2}  +  {9z}^{2}  + 2 \times x \times 3z \\  \\  {x}^{2}  +  {9z}^{2}  + 6xz

Answered by Anonymous
64

{\large{\frak{\pmb{Question}}}}

  • Solve the following by using suitable identity = (x+3z)²

{\large{\frak{\pmb{Using \; identity}}}}

  • (a+b)² = a² + 2ab + b²

{\large{\frak{\pmb{Solution}}}}

  • (x + 3z)² = x² + 6xz + 3z²

{\large{\frak{\pmb{Full \; Solution}}}}

→ (x+3z)²

→ (a+b)² = a² + 2ab + b²

{\large{\frak{\pmb{Here,}}}}

★ a is x

★ b is 3z

{\large{\frak{\pmb{Putting \; the \; values}}}}

→ x² +2(x)(3z) + 3z²

→ x² + 6xz + 3z²

{\large{\frak{\pmb{Additional \; information}}}}

Algebraic identities –

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A+B)^{2} \: = \: = A^{2} \: + \: 2AB \: + B^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A-B)^{2} \: = \: = A^{2} \: - \: 2AB \: + B^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto A^{2} \: - B^{2} \: = \: (A+B) \: (A-B)}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A+B)^{2} \: = (A-B)^{2} \: +4AB}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A-B)^{2} \: = (A+B)^{2} \: -4AB}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A+B)^{3} \: = A^{3} + \: 3AB \: (A+B) \:+ B^{3}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto (A-B)^{3} \: = A^{3} - \: 3AB \: (A-B) \: + B^{3}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto A^{3} \: + B^{3} = \: (A+B) (A^{2} - AB + B^{2}}}}

Factorised identities -

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:+\;b)^{2}\; =\;a^{2}\:+\:b^{2}\:+\:2ab}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:-\:b)^{2}\;=\;a^{2}\:+\:b^{2}\:-\:2ab}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:+\:b\:+\:c)^{2}\;=\;a^{2}\:+\:b^{2}\:+\:c^{2}\:+\:2ab\:+\:2bc\:+\:2ac}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:+\;b)^{3}\;=\;a^{3}\:+\:b^{3}\:+\:3ab(a\:+\:b)}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto\;\;(a\:-\;b)^{3}\;=\;a^{3}\:-\:b^{3}\:-\:3ab(a\:-\:b)}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto \;\;(a+b)^{2} \: = \: a^{2} + 2ab + b^{2}}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto \;\;(a-b)^{2} \: = a^{2} - 2ab + b^{2}}\end{gathered}

\begin{gathered}\\\;\sf{\leadsto \;\;(a+b)(a-b) \: = \: a^{2} - b^{2}}\end{gathered}

Similar questions