Math, asked by yashchirdhani, 1 month ago

solve Using the quadratic formula:x^2_4x+1=0​

Answers

Answered by Steph0303
15

Answer:

Given Equation:

→ x² - 4x + 1 = 0

General Equation of a Quadratic Polynomial:

→ ax² + bx + c

Comparing both the equations we get:

⇒ a = 1, b = -4, c = 1

The quadratic formula in terms of a, b and c is given as:

\boxed{ \bf{x = \dfrac{ - b \pm \sqrt{b^2 - 4ac}}{2a}}}

Substituting the given information we get:

x = \dfrac{ -(-4) \pm \sqrt{16 - 4(1)(1)}}{2\times1}\\\\\\x = \dfrac{ 4 \pm \sqrt{12}}{2}\\\\\\x =  \dfrac{ 4 \pm 2\sqrt{3}}{2}\\\\\\\boxed{ \bf{x = 2 \pm \sqrt{3}}}

Hence the values of 'x' or roots of the given quadratic equation are:

→ x = 2 + √3

→ x = 2 - √3

Answered by TrueRider
29

Solution:

x =  2 -  \sqrt{3 \: }  \: and \: x =  2  +  \sqrt{3 \: }

Step-by-step explanation:

The quadratic formula states:

For ax² + bx + c = 0, the values of x which are the solutions to the equation are given by:

x =  \frac { - b  \: ±\sqrt{ {b}^{2} - (4ac)  \: } }{2 \: . \: a} \:  \:

Substituting:

1 for a

-4 for b

1 for c gives:

x =  \frac{ - ( - 4) ± \sqrt{ {( - 4) }^{2}  - (4 \: . \: 1 \: . \: 1)} }{2 \: . \: 1}

x =  \frac{ \:  \: 4± \sqrt{16 - 4 \:  \: } }{2}

x =  \frac{ \: 4± \sqrt{12 \: } }{2}

x =  \frac{ \: 4 -  \sqrt{4 \: . \: 3 \: }}{2}   \:  and \: x =  \frac{ \: 4  \:  +  \:  \sqrt{4 \: . \: 3 \: }}{2}   \:

x =  \frac{ \: 4 -  \sqrt{4  }\sqrt{3}  \: }{2}  \: and \: x =  \frac{ \: 4   \: +  \:  \sqrt{4  }\sqrt{3}  \: }{2}

x =  \frac{ \: 4 - 2 \sqrt{3} \:  }{2}  \: and \: x =  \frac{ \: 4  +  2 \sqrt{3} \:  }{2}

x =  \frac{4}{2}  -  \frac{ \: 2 \sqrt{3 \: } }{2}  \: and \: x =  \frac{4}{2}  -  \frac{ \: 2 \sqrt{3 \: } }{2}

x =  2 -  \sqrt{3 \: }  \: and \: x =  2  +  \sqrt{3 \: }

Similar questions