solve with explanations sin^6 +cos^6 = 1-3sin^2cos^2
Answers
Answered by
11
Identity Formulas :
• sinθ * cosecθ = 1
• cosθ * secθ = 1
• tanθ * cotθ = 1
• sin²θ + cos²θ = 1
• sec²θ - tan²θ = 1
• cosec²θ - cot²θ = 1
Proof :
Now, LHS = sin⁶θ + cos⁶θ
= (sin²θ)³ + (cos²θ)³
[ ∵ xᵃᵇ = (xᵃ)ᵇ ]
= (sin²θ + cos²θ)
{(sin²θ)² + (cos²θ)² - sin²θ cos²θ}
[ ∵ a³ + b³ = (a + b) (a² + b² - ab) ]
= 1 * {(sin²θ + cos²θ)² - 2sin²θ cos²θ - sin²θ cos²θ}
[ ∵ a² + b² = (a + b)² - 2ab ]
= 1 - 3 sin²θ cos²θ
= RHS
↠ sin⁶θ + cos⁶θ = 1 - 3 sin²θ cos²θ
Hence, proved.
Shruthi12345:
WAHHHH
Answered by
2
hope this answer is helpful plz mark it as brainliest if u think I can help u just follow me
Similar questions
Social Sciences,
7 months ago
Math,
7 months ago
World Languages,
7 months ago
English,
1 year ago
Math,
1 year ago