Solve with proper explanation:
(sqrt 2 + sqrt 3)^3 - (1/(sqrt 2 + sqrt3)^3)
Answers
Solution :-
Given that
[(√2+√3)³ ] - [1/(√2+√3)³]
It can be written as
= [ (√2+√3)³ ] - [ 1/(√2+√3)]³
On taking 1/(√2+√3)
The denominator = √2+√3
The Rationalising factor of √a+√b is √a-√b
The Rationalising factor of √2+√3 is √2-√3
On Rationalising the denominator then
= [/1(√2+√3)]×[(√2-√3)/(√2-√3)]
= (√2-√3)/[(√2+√3)(√2-√3)]
= (√2-√3)/([(√2)²-(√3)²]
Since, (a+b)(a-b) = a²-b²
Where , a = √3 and b = √2
= (√2-√3)/(2-3)
= (√2-√3)/(-1)
= -(√2-√3)
= -√2+√3
= √3-√2
Therefore, 1/(√2+√3) = √3-√2
Now,
Given expression becomes
(√2+√3)³-(√3-√2)³
= [(√2)³+(√3)³+3(√2)²(√3)+3(√2)(√3)²] - [(√3)³-(√2)³ -3(√3)²(√2) +3(√3)(√2)²]
Since, (a+b)³ = a³+b³+3a²b+3ab²
and (a-b)³ = a³-b³-3a²b+3ab²
= [(√2)³+(√3)³+3(2)(√3)+3(√2)(3)] - [(√3)³-(√2)³ -3(3)√2)+3(√3)(2)]
= [(√2)³+(√3)³+6√3+9√2] - [(√3)³-(√2)²-9√2+6√3]
= (√2)³+(√3)³+6√3+9√2-(√3)³+(√2)³+ 9√2 - 6√3
= [(√2)³+(√2)³]+[(√3)³-(√3)³]+[6√3-6√3] + (9√2+9√2)
= (√)2³+(√2)³+0+0+9√2+9√2
= (√2)³+(√2)³+9√2+9√2
= 2(√2)³+(9+9)√2
= 2(√2)³+18√2
= 2(√2×√2×√2)+18√2
= 2(2√2)+18√2
= 4√2+18√2
= (4+18)√2
= 22√2
Answer :-
[(√2+√3)³ ] - [1/(√2+√3)³] = 22√2
Used formulae:-
• The Rationalising factor of √a+√b is √a-√b
• (a+b)³ = a³+b³+3a²b+3ab²
• (a-b)³ = a³-b³-3a²b+3ab²
• (a+b)(a-b) = a²-b²
Given that
[(√2+√3)³ ]-[1/(√2+√3)³]
It can be written as
= [(√2+√3)³ ]-[1/(√2+√3)]³
On taking 1/(√2+√3)
The denominator = √2+√3
The Rationalising factor of Va+√b is va-vb
The Rationalising factor of √2+√3 is
√2-√3
On Rationalising the denominator then
= [/1(√2+√3)]*[(√2-√3)/(√2-√3)]
=(√2-√3)/[(√2+√3)(√2-√3)]
=(√2-√3)/([(√2)²-(√3)²]
Since, (a+b)(a-b) = a²-b²
Where, a = √3 and b = √2
=(√2-√3)/(2-3)
=(√2-√3)/(-1)
= -(√2-√3)
= -√2+√3
= √3-√2
Therefore, 1/(√2+√3)=√3-√2
Now,
Given expression becomes
(√2+√3)³-(√3-√2)³
= [(√2)³+(√3)³+3(√2)²(√3)+3(√2)(√3)²] - [(√3)³-(√2)³ -3(√3)²(√2) +3(√3)(√2)²]
Since, (a+b)³ = a³+b³+3a²b+3ab²
and (a-b)³ a³-b³-3a²b+3ab²
= [(√2)³+(√3)³+3(2)(√3)+3(√2)(3)] -
[(√3)³-(√2)³-3(3)√2)+3(√3)(2)]
= [(√2)³+(√3)³+6√3+9√2] -
[(√3)³-(√2)²-9-√2+6√3]
=(√2)³+(√3)³ +6√3+9√2-(√3)³+(√2)³+ 9-√2
- 6-√3
= [(√2)³+(√2)³]+[(√3)³-(√3)³]+[6√3-6√3] +
(9-√2+9√2)
=(√)2³+(√2)³+0+0+9√2+9√2
=(√2)³+(√2)³3+9√2+9-√2
= 2(√2)³+(9+9)√2
= 2(√2)³+18-√2
2(√2x√2x√2)+18-√2
= 2(2-√2)+18-√2
=
= 4√2+18-√2
= (4+18) -√2
= 22√2
Answer :
[(√2+√3)³] - [1/(√2+√3)³] = 22√2
Used formulae:
• The Rationalising factor of Va+√b is
Va-vb
• (a+b)³ = a³+b³+3a²b+3ab²
(a-b)³ = a³-b³-3a²b+3ab²
• (a+b)(a-b) = a²-b²