Math, asked by duttasayan1111, 10 months ago

solve with quadratic formula
 {x}^{2 \div 5 }  - 5x {}^{1 \div 5}  + 6 = 0

Answers

Answered by shadowsabers03
2

Given to solve,

\longrightarrow\sf{x^{\frac{2}{5}}-5x^{\frac{1}{5}}+6=0}

\longrightarrow\sf{x^{\frac{1}{5}\times2}-5x^{\frac{1}{5}}+6=0}

\longrightarrow\sf{\left(x^{\frac{1}{5}}\right)^2-5\left(x^{\frac{1}{5}}\right)+6=0}

Let \sf{k=x^{\frac{1}{5}}.} Then the equation becomes,

\longrightarrow\sf{k^2-5k+6=0}

Here,

  • \sf{a=1}

  • \sf{b=-5}

  • \sf{c=6}

Solving for \sf{k} by applying quadratic formula,

\longrightarrow\sf{k=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}

\longrightarrow\sf{k=\dfrac{5\pm\sqrt{(-5)^2-4\times1\times6}}{2\times1}}

\longrightarrow\sf{k=\dfrac{5\pm\sqrt{25-24}}{2}}

\longrightarrow\sf{k=\dfrac{5\pm\sqrt{1}}{2}}

\longrightarrow\sf{k=\dfrac{5\pm1}{2}}

\longrightarrow\sf{k=\dfrac{5+1}{2}\quad OR\quad k=\dfrac{5-1}{2}}

\longrightarrow\sf{k=3\quad OR\quad k=2}

Undoing \sf{k=x^{\frac{1}{5}},}

\longrightarrow\sf{x^{\frac{1}{5}}=3\quad OR\quad x^{\frac{1}{5}}=2}

\longrightarrow\sf{x=3^5\quad OR\quad x=2^5}

\longrightarrow\sf{\underline{\underline{x=243\quad OR\quad x=32}}}

Answered by DeviIQueen
0

♦ Hey....!! Refer to the attachment...!!!

Attachments:
Similar questions