Math, asked by patelaayushi2624, 1 month ago

solve with solution..​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Given- }}

\rm :\longmapsto\:P(A) = \dfrac{1}{4}

\rm :\longmapsto\:P(A|B) = \dfrac{1}{2}

\rm :\longmapsto\:P(B|A) = \dfrac{2}{3}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:P(B)

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:P(A) = \dfrac{1}{4}

and

\rm :\longmapsto\:P(B|A) = \dfrac{2}{3}

We know,

\rm :\longmapsto\:P(B|A) = \dfrac{P(A\cap B)}{P(A)}

So,

\rm :\longmapsto\:P(A\cap B) = P(A) \times P(B|A)

On substituting the values, we get

\rm :\longmapsto\:P(A\cap B) = \dfrac{1}{4}  \times \dfrac{2}{3}

\bf :\longmapsto\:P(A\cap B) = \dfrac{1}{6}

Now, Further given that,

\rm :\longmapsto\:P(A|B) = \dfrac{1}{2}

We know that

\rm :\longmapsto\:P(A|B) = \dfrac{P(A\cap B)}{P(B)}

On substituting the values, we get

\rm :\longmapsto\:\dfrac{1}{2}  = \dfrac{\dfrac{1}{6} }{ \:  \: P(B) \:  \: }

\rm :\longmapsto\:\dfrac{1}{2}  = \dfrac{1}{6P(B)}

\rm :\longmapsto\:P(B)  = \dfrac{2}{6}

\rm :\longmapsto\:P(B)  = \dfrac{1}{3}

Hence, Option (c) is correct.

Additional Information :-

\boxed{ \rm{ P(A\cup B) = P(A) + P(B) - P(A\cap B)}}

\boxed{ \rm{ P(A'\cap B') = 1 - P(A\cup B)}}

\boxed{ \rm{ P(A'\cup B') = 1 - P(A\cap B)}}

\boxed{ \rm{ P(A\cap B') = P(A) - P(A\cap B)}}

\boxed{ \rm{ P(A'\cap B) = P(B) - P(A\cap B)}}

Answered by Anonymous
2

Answer:

HENCE YOUR ANSWER = 1/3

Step-by-step explanation:

given that P(A) = 1/4

P(A/B) = P(A ^ B) / P(B),,,,,,,,,(1)

P(B/A) = P(B ^ A) / P(A)

here

P(A/B) = 1/2 P(A) = 1/4

P(B/A) = 2/3

HENCE WE CAN WRITE

2/3 = P(B^A) / 1/4

P(B^A) = 2/3*1/4

= 2/12 = 1/6

WE KNOW THAT

P(A^B) = P(B^A)

While substituting in equation 1

1/2 = 1/6 / P(B)

so P(B) = 1/6 / 1/2

P(B) = 2/6 = 1/3

Similar questions