Math, asked by patelaayushi2624, 1 month ago

solve with solution..​

Attachments:

Answers

Answered by ajr111
31

Answer:

(b) 37/45 is the correct option

Step-by-step explanation:

Given :

P(A) = 1/3 ; P(B) = 1/4 ; P(A ∩ B) = 1/5

To Find :

P(\frac{A'}{B'} )

Formula :

  • P(X) = 1 - P(X')
  • P(X ∪ Y) = P(X) + P(Y) - P(X ∩ Y)
  • P(X|Y) = P(\frac{X}{Y} ) = \frac{P(X \cap Y)}{P(Y)}
  • P(A'∩B') = P((A∪B)')

Solution :

So, P(A'|B') = P(A'∩B')/P(B')

P(A∪B) = P(A) + P(B) - P(A∩B)

=> P(A \cup B) = \frac{1}{3}  + \frac{1}{4} - \frac{1}{5} \\\\=> P(A \cup B) = \frac{7}{12} - \frac{1}{5} \\\\=> P(A \cup B) = \frac{23}{60}

Now,

P((A∪B)') = 1 - P(A ∪ B)

=> P((A\cap B)') = 1 - \frac{23}{60}  = \frac{37}{60}

So,

P(A'∩B') = P((A∪B)') = 37/60

P(B') = 1 - P(B)

=> P(B') = 1 - 1/4 = 3/4

Now,

P(\frac{A'}{B'} ) = \frac{P(A' \cap B')}{P(B')}

=> P(\frac{A'}{B'} ) = \frac{P(A' \cap B')}{P(B')} = \frac{\frac{37}{60} }{\frac{3}{4} } \\\\=> P(\frac{A'}{B'} ) =\frac{37 \times 4}{ 60 \times 3 }  = \frac{37}{45}

Hope it helps

Please mark as brainliest

Similar questions