Math, asked by Wajihasattar, 4 months ago

solve with substitution method
4x + 3y = 5
3x - 2y = 8

Answers

Answered by mousam8673
1

Answer:

4x + 3y = 5 -  -   -  -  (1) \\  \\  3x  - 2y = 8 -  -  -  -  -  - (2) \\  \\ then \: from \: eqn \: (2) \\ 3x - 2y = 8 \\  =  > 3x = 8 + 2y \\  =  > x =  \frac{8 + 2y}{3}  \\ putting \: the \: value \: of \: x \: in \: eqn \: (1) \\ 4( \frac{8 + 2y}{3} ) + 3y = 5 \\  =  > \frac{32 + 8y}{3}   + 3y = 5 \\  =  >  \frac{32 + 8y + 9y}{3}  = 5 \\  =  > 32 + 17y = 15 \\  =  > 17y =  - 17 \\  =  > y =  - 1 \\ putting \: the \: value \: of \: y \: in \: eqn \: (1) \\ 4x + 3( - 1) = 5 \\  =  > 4x - 3 = 5 \\  =  > 4x = 8 \\  =  > x = 2

so x = 2 ,y = -1

Answered by XxxRAJxxX
1

Given :

  • 4x + 3y = 5 .....(1)
  • 3x - 2y = 8 ......(2)

Solution:

In equation 2,

→ 3x - 2y = 8

→ 3x = 8 + 2y

=> x = (8 + 2y)/3

Putting this value in equation 1,

we get,

→ 4[(8 + 2y)/3] + 3y = 5

→ (32 + 8y)/3 + 3y = 5

→ (32 + 8y + 9y)/3 = 5

→ (32 + 17y)/3 = 5

→ 15 = 32 + 17y

→ 15 - 32 = 17y

→ -17y = 17y

=> y = - 1

putting this value in equation 1,

→ 4x + 3(-1) = 5

→ 4x - 3 = 5

→ 4x = 5 + 3

→ 4x = 8

→ x = 8/4

=> x = 2

Similar questions