Math, asked by prajapatarun1216, 2 months ago

solve withoit spamming​

Attachments:

Answers

Answered by vipashyana1
1

Answer:

1) \frac{1}{a + b + x}  =  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{x}  \\  \frac{1}{ a+ b + x}  =  \frac{bx + ax + ab}{abx}  \\ cross \: multiply \\ abx = (a +  b+ c)( bx+ ax +ab ) \\ abx =a ( bx+ ax +ab ) +b (bx + ax + ab) + x(bx + ax +ab ) \\ abx = abx +  {a}^{2} x +  {a}^{2} b +  {b}^{2} x + abx + a {b}^{2}  + b {x}^{2}  + a {x}^{2}  + abx \\ abx - abx = (abx +  {a}^{2} x )+  ({a}^{2} b +  a{b}^{2} ) +  ({b}^{2} x + abx )+  (b{x}^{2} + a  {x}^{2} ) \\ 0 = ax( b+ a) +ab ( a+ b) +bx ( b+ a) + {x}^{2}  (b + a) \\ 0 = (b + a)( ax+ ab +bx  +  {x}^{2} ) \\ Since \: a + b ≠0 \\Therefore,  \: ax +  ab+ bx + {x}^{2}   = 0 \\ ( {x}^{2}  + ax) +( bx + ab) = 0 \\ x(x + a) + b(x + a) = 0 \\ (x +a )(x + b) = 0 \\ (x + a = 0)(x + b = 0) \\ x = ( - a) \: and \: x = ( - b)

2) \frac{1}{x - 2}  +  \frac{2}{x - 1}  =  \frac{6}{x}  \\  \frac{1(x - 1) + 2(x - 2)}{(x - 2)(x - 1)}  =  \frac{6}{x}  \\  \frac{x - 1 + 2x - 4}{x(x - 1) - 2(x - 1)}  =  \frac{6}{x}  \\  \frac{x + 2x - 1 - 4}{ {x}^{2} - x - 2x + 2 }  =  \frac{6}{x}  \\  \frac{3x - 5}{ {x}^{2} - 3x + 2 }  =  \frac{6}{x}  \\ cross \: multiply \\ 6( {x}^{2}  - 3x + 2) = x(3x - 5) \\ 6 {x}^{2}  - 18x + 12 = 3 {x}^{2}  - 5x \\ 6 {x}^{2}  - 3 {x}^{2}  - 18x + 5x + 12 = 0 \\ 3 {x}^{2}  - 13x + 12 = 0 \\  3{x}^{2}  - 9x - 4x + 12 = 0 \\ (3 {x}^{2}  - 9x) -( 4x + 12) = 0 \\ 3x(x - 3) - 4(x - 3) = 0 \\ (x - 3)(3x - 4) = 0 \\ (x - 3 = 0)(3x - 4 = 0) \\ x = 3 \: and \:x  =  \frac{4}{3}  \\ Therefore, \: x = 3

Similar questions