Math, asked by aryan021212, 9 days ago

Solve without using L Hospital Rule

lim \: x \to \:  \frac{\pi}{4} \:  \:   \frac{sinx - cosx}{x -  \frac{\pi}{4} }

Answers

Answered by mathdude500
24

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to \dfrac{\pi}{4} }\rm  \frac{sinx - cosx}{x - \dfrac{\pi}{4} }  \\

Consider,

\rm \: sinx - cosx \\

can be further rewritten as

\rm \: =  \: \sqrt{2}\bigg(\dfrac{1}{ \sqrt{2} }sinx  - \dfrac{1}{ \sqrt{2}}cosx \bigg)  \\

can be further rewritten as

\rm \: =  \: \sqrt{2}\bigg(cos\dfrac{\pi}{4} sinx - sin\dfrac{\pi}{4} cosx \bigg)  \\

can be re-arranged as

\rm \: =  \: \sqrt{2}\bigg(sinx \: cos\dfrac{\pi}{4}  -cosx \:  sin\dfrac{\pi}{4} \bigg)  \\

\rm \: =  \:sin\bigg(x - \dfrac{\pi}{4} \bigg)  \\

[\rm \:  \because \: sin(x - y) = sinx \: cosy \:  -  \: siny \: cosx \:  \: ] \\

So,

\rm\implies \:sinx - cosx =  \sqrt{2}sin\bigg(x - \dfrac{\pi}{4} \bigg)  \\

So, Substitute this value in the given expression, we get

\rm \: =  \:\displaystyle\lim_{x \to \dfrac{\pi}{4} }\rm  \frac{ \sqrt{2} sin\bigg(x - \dfrac{\pi}{4} \bigg) }{x - \dfrac{\pi}{4} }  \\

can be further rewritten as

\rm \: =  \: \sqrt{2} \:  \displaystyle\lim_{x \:   -  \:  \dfrac{\pi}{4}  \:  \to \: 0}\rm  \frac{sin\bigg(x - \dfrac{\pi}{4} \bigg) }{x - \dfrac{\pi}{4} }  \\

We know,

\boxed{\sf{  \:\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  = 1 \:  \: }} \\

So, using this result, we get

\rm \: =  \: \sqrt{2}  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \displaystyle\lim_{x \to \dfrac{\pi}{4} }\rm  \frac{sinx - cosx}{x - \dfrac{\pi}{4} } =  \sqrt{2} \:  \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  = 1 \:  \: }} \\

\boxed{\sf{  \:\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  = 1 \:  \: }} \\

\boxed{\sf{  \:\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x}  = 1 \:  \: }} \\

\boxed{\sf{  \:\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x}  = loga \:  \: }} \\

Answered by MysticSohamS
17

Answer:

your answer is in above pics

so pls mark it as brainliest

Attachments:
Similar questions