Math, asked by shahan9807612, 11 months ago

Solve: √x+1 + √2x - 5 = 3......and the root is on both root x+1 and root 2x-5​

Answers

Answered by Agastya0606
12

Given: The equation √(x+1) + √(2x - 5) = 3

To find: The value of x?

Solution:

  • Now we have given the expression as:

                   √(x+1) + √(2x - 5) = 3

                   √(x+1) = 3 - √(2x - 5)

  • Now squaring on both sides, we get:

                   x + 1 = ( 3 - √(2x - 5) )^2

                   x + 1 = 9 + 2x - 5 - 6√(2x - 5)

                   6√(2x - 5) = 9 + 2x - 5 - x - 1

                   6√(2x - 5) = 3 + x

  • Now again squaring on both sides, we get:

                   36(2x - 5) = (x + 3)^2

                   72x - 180 = x^2 + 9 + 6x

                   x^2 - 66x + 189 = 0

                   x^2 - 63x - 3x + 189 = 0

                   x(x-63) - 3(x-63) = 0

                   (x - 3)(x-63) = 0

                   x = 3,63

Answer:

          So the value of x is 3 or 63.

Answered by kumarkartikay005
3

Answer :

3 or 63

Given: The equation √(x+1) + √(2x - 5) = 3

To find: The value of x?

Solution:

Now we have given the expression as:

                  √(x+1) + √(2x - 5) = 3

                  √(x+1) = 3 - √(2x - 5)

Now squaring on both sides, we get:

                  x + 1 = ( 3 - √(2x - 5) )^2

                  x + 1 = 9 + 2x - 5 - 6√(2x - 5)

                  6√(2x - 5) = 9 + 2x - 5 - x - 1

                  6√(2x - 5) = 3 + x

Now again squaring on both sides, we get:

                  36(2x - 5) = (x + 3)^2

                  72x - 180 = x^2 + 9 + 6x

                  x^2 - 66x + 189 = 0

                  x^2 - 63x - 3x + 189 = 0

                  x(x-63) - 3(x-63) = 0

                  (x - 3)(x-63) = 0

                  x = 3,63

Answer:

         So the value of x is 3 or 63.

Similar questions