Math, asked by abrazshaikh, 1 year ago

solve x. 1/a+b+x=1/a+1/b+1/x​

Answers

Answered by mathdude500
0

Answer:

\boxed{\sf \: \: x  \: =   \: -  \: a \: ,   \: -  \: b \:  \: } \\  \\

Step-by-step explanation:

Given equation is

\sf \: \dfrac{1}{a}  + \dfrac{1}{b} +  \dfrac{1}{x}  = \dfrac{1}{a + b + x}  \\  \\

\sf \: \dfrac{1}{a}  + \dfrac{1}{b} = \dfrac{1}{a + b + x} -  \dfrac{1}{x}   \\  \\

\sf \: \dfrac{b + a}{ab}  = \dfrac{x - (a + b + x)}{(a + b + x)x}  \\  \\

\sf \: \dfrac{b + a}{ab}  = \dfrac{x - a  -  b  -  x}{(a + b + x)x}  \\  \\

\sf \: \dfrac{b + a}{ab}  = \dfrac{ - a  -  b  }{(a + b + x)x}  \\  \\

\sf \: \dfrac{b + a}{ab}  = \dfrac{ - (a  +  b)}{(a + b + x)x}  \\  \\

On cancel out (a + b) from both sides, we get

\sf \: \dfrac{1}{ab}  = \dfrac{ -1}{(a + b + x)x}  \\  \\

\sf \: x(a + b + x) =  - ab \\  \\

\sf \: xa + xb +  {x}^{2} =  - ab \\  \\

\sf \: {x}^{2} + ax + bx + ab = 0 \\  \\

\sf \: x(x + a) + b(x + a) = 0 \\  \\

\sf \: (x + a) \: (x + b) = 0 \\  \\

\implies\sf \: x  \: =   \: -  \: a \:  \: or \:  \: x  \: =   \: -  \: b \\  \\

Hence,

\implies\sf \: x  \: =   \: -  \: a \: ,   \: -  \: b \\  \\

\rule{190pt}{2pt}

Additional Information

Nature of roots :

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions