Solve (√x/1-x)+(√1-x/x)=13/6
Answers
Answered by
0
Step-by-step explanation:
Here, the given expression,
\sqrt{\frac{x}{1-x}}+\sqrt{\frac{1-x}{x}}=\frac{13}{6}
\frac{\sqrt{x}}{\sqrt{1-x}}+\frac{\sqrt{1-x}}{\sqrt{x}}=\frac{13}{6}
\frac{x+1-x}{\sqrt{x(1-x)}}=\frac{13}{6}
\frac{1}{\sqrt{x(1-x)}}=\frac{13}{6}
6=13[\sqrt{x(1-x)}]
By squaring both sides,
36=169[x(1-x)]
36=169x-169x^2
169x^2-169x+36=0
By splitting the middle term,
169x^2-117x-52x+36=0
13x(13x-9)-4(13x-9)=0
(13x-9)(13x-4)=0
\implies 13x - 9 = 0\text{ or }13x - 4 = 0
\implies x = \frac{9}{13}\text{ or }x = \frac{4}{13}
Which is the required solution.
Answered by
0
Answer :
x=9/13 or x=4/13
Similar questions