Math, asked by nirshvedsanjayp9slrp, 1 year ago

Solve : (x + 1/x)^2 - 3/2 ( x - 1/x) = 4

Answers

Answered by Preeti9432
43

Answer:

Hey... here is your answer in the image.

Hope it helps! ! !

Attachments:
Answered by Qwparis
0

The correct answers are -1, 1, 2 and \frac{-1}{2}.

Given: The equation = (x+\frac{1}{x} )^{2} -\frac{3}{2} (x-\frac{1}{x} )=4.

To Find: Evaluate the equation.

Solution:

(x+\frac{1}{x} )^{2} =x^{2} +\frac{1}{x^{2} } +2*x*\frac{1}{x}

Add and subtract 2*x*\frac{1}{x}.

(x+\frac{1}{x} )^{2} =x^{2} +\frac{1}{x^{2} } -2*x*\frac{1}{x}+2*x*\frac{1}{x}+2*x*\frac{1}{x}

(x+\frac{1}{x} )^{2} =(x-\frac{1}{x} )^{2} +2*x*\frac{1}{x}+2*x*\frac{1}{x}

(x+\frac{1}{x} )^{2} =(x-\frac{1}{x} )^{2} +4

Put this in the original equation.

(x+\frac{1}{x} )^{2} -\frac{3}{2} (x-\frac{1}{x} )=4

(x-\frac{1}{x} )^{2} +4-\frac{3}{2} (x-\frac{1}{x} )=4

Let x-\frac{1}{x} =p.

p^{2} -\frac{3}{2}p=0

p(p-\frac{3}{2} )=0

p = 0 and p = \frac{3}{2}.

Firstly take p = 0.

x-\frac{1}{x}=0

x^{2} -1=0

(x-1)(x+1) = 0

x = +1 and -1.

Now take p=\frac{3}{2}.

x-\frac{1}{x} =\frac{3}{2}

\frac{x^{2}-1 }{x} =\frac{3}{2}

2x^{2} -2=3x

2x^{2} -3x-2=0

2x^{2} -4x+x-2=0\\ 2x(x-2)+(x-2)

(2x+1)(x-2)

x = 2, \frac{-1}{2}

Hence, the values of x are -1, 1, 2 and \frac{-1}{2}.

#SPJ2

Similar questions