Math, asked by liveonceyouonly88, 3 months ago

solve(x-1)/ (x+3)(x²-4) into proper fraction​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{x - 1}{(x + 3)( {x}^{2}  - 4)}

can be rewritten as

\rm :\longmapsto\:\dfrac{x - 1}{(x + 3)( x  - 2)(x + 2)}

\rm\:Let \: \dfrac{x - 1}{(x + 3)( x  - 2)(x + 2)} = \dfrac{a}{x + 3}  + \dfrac{b}{x - 2}  + \dfrac{c}{x + 2} -  - (1)

 \rm \: x - 1 = a(x + 2)(x - 2) + b(x + 3)(x + 2) + c(x + 3)(x - 2) -  - (2)

On substituting x = - 3 in equation (2) we get

 \rm \:  - 3 - 1 = a( - 3+ 2)( - 3- 2) + b( - 3+ 3)( - 3 + 2) + c( - 3 + 3)( - 3 - 2)

 \rm \:  - 3 - 1 = a( -1)( - 5)

\bf\implies \:a =  -  \: \dfrac{4}{5}  -  -  - (3)

On substituting x = 2 in equation (2), we get

 \rm \: 2 - 1 = a(2 + 2)(2 - 2) + b(2 + 3)(2 + 2) + c(2 + 3)(2 - 2)

 \rm \: 1 =  b(5)(4)

\bf\implies \:b \:  =  \: \dfrac{1}{20}  -  -  - (4)

On substituting x = - 2 in equation (2), we get

 \rm \:  - 2 - 1 = a( - 2 + 2)( - 2 - 2) + b( - 2 + 3)( - 2 + 2) + c( - 2 + 3)( - 2 - 2)

 \rm \:  - 3 =  c( 1)( - 4)

\bf\implies \:c = \dfrac{3}{4}  -  -  - (5)

On substituting the values of a, b, c in equation (1), we get

\rm\: \therefore \:  \: \dfrac{x - 1}{(x + 3)( x  - 2)(x + 2)} = \dfrac{ - 4}{5(x + 3)}  + \dfrac{1}{20(x - 2)}  + \dfrac{3}{4(x + 2)}

Similar questions