Math, asked by anilbansod, 3 months ago

solve : √x+13 + √x-1 /√x+13-√x-1 =3​

Answers

Answered by Anonymous
4

Given Equation

 \tt \to \:  \dfrac{ \sqrt{x + 13}  +  \sqrt{x - 1} }{ \sqrt{x + 13}  -  \sqrt{x - 1} }  = 3

To find the value of x

So Take

\tt \to \:  \dfrac{ \sqrt{x + 13}  +  \sqrt{x - 1} }{ \sqrt{x + 13}  -  \sqrt{x - 1} }  = 3

Using Rationalization Method , we get

\tt \to \:  \dfrac{ \sqrt{x + 13}  +  \sqrt{x - 1} }{ \sqrt{x + 13}  -  \sqrt{x - 1} }     \times\dfrac{ \sqrt{x + 13}  +  \sqrt{x - 1} }{ \sqrt{x + 13}   +   \sqrt{x - 1} }     = 3

Use this identities

  \tt \to \: (a + b)(a + b) = (a + b) {}^{2}  \\  \tt \to(a + b)(a - b) = ( {a}^{2}  -  {b}^{2} ) \\  \tt \to(a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \:  \:  \:

we get

 \tt \to\dfrac{ (\sqrt{x + 13}  +  \sqrt{x - 1} ) {}^{2} }{ (\sqrt{x + 13}) {}^{2}   -  (\sqrt{x - 1}) {}^{2}  }     = 3

 \tt \to \:  \dfrac{( \sqrt{x + 13 }) {}^{2} + ( \sqrt{x - 1})^{2} + 2( \sqrt{x + 13})( \sqrt{x - 1})    }{x + 13 - x + 1}  = 3

 \tt \to \dfrac{x + 13 + x - 1 + 2 \sqrt{(x + 13)(x - 1)} }{14}  = 3

 \tt \to \:  \dfrac{2x + 12 + 2 \sqrt{ {x}^{2} - x + 13x - 13 } }{14}  = 3

 \tt \to \:  \dfrac{2(x + 6 +  \sqrt{ {x}^{2} + 12x - 13 }) }{14}  = 3

 \tt \to \:  \dfrac{x + 6  + \sqrt{ {x}^{2} + 12x - 13 } }{7}  = 3

 \tt \to \: x + 6 +  \sqrt{ {x}^{2}  + 12x - 13}  = 21

 \tt \to \:  \sqrt{ {x}^{2} + 12x - 13 }  = 21 - 6 - x

\tt \to \:  \sqrt{ {x}^{2} + 12x - 13 }  = 15- x

Now Squaring on both side

\tt \to \:  (\sqrt{ {x}^{2} + 12x - 13 } ) {}^{2} = (15- x)^{2}

\tt \to \:   {x}^{2} + 12x - 13 = (15- x) {}^{2}

 \tt \to \:  {x}^{2}  + 12x - 13 = 225 +  {x}^{2}  - 30x

\tt \to \:   12x - 13 = 225  - 30x

\tt \to \:   12x + 30x= 225   + 13

 \tt \to \: 32x = 238

 \tt  \to \: x =  \dfrac{238}{32}

 \tt \to \: x =  \dfrac{119}{16}

Answer

\tt \to \: x =  \dfrac{119}{16}

Similar questions