Math, asked by BansalMehak, 1 year ago

solve x^2-(2+i)x=1-7i

Answers

Answered by Anonymous
19
Hope u got ur answer
mark me as brainliest for further help of people .
Attachments:

Anonymous: Ur welcome
Answered by pinquancaro
9

Answer:

The value of x are x=\frac{(2+i)+\sqrt{7+32i}}{2},\frac{(2+i)-\sqrt{7+32i}}{2}  

Step-by-step explanation:

Given : Expression x^2-(2+i)x=1-7i

To find : Solve the expression ?

Solution :

x^2-(2+i)x-(1-7i)=0

Solve by quadratic formula, x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Here, a=1 , b=-(2+i), c=-(1-7i)

Substitute the value in the formula,

x=\frac{-(-(2+i))\pm\sqrt{(-(2+i))^2-4(-(1-7i))(1)}}{2(1)}

x=\frac{(2+i)\pm\sqrt{4-1+4i+4+28i}}{2}

x=\frac{(2+i)\pm\sqrt{7+32i}}{2}

x=\frac{(2+i)+\sqrt{7+32i}}{2},\frac{(2+i)-\sqrt{7+32i}}{2}

Therefore, The value of x are x=\frac{(2+i)+\sqrt{7+32i}}{2},\frac{(2+i)-\sqrt{7+32i}}{2}

Similar questions