Math, asked by naazaleena2, 1 year ago

solve x^2-(√3+1)x+√3=0 by completing square

Answers

Answered by Sattwik7
3
x²-(3^½ + 1)x + 3^½ = 0
(x - 3^½)(x - 1) = 0
x = 3^½     or,     x=1,


I hope you enjoyed.
Answered by tardymanchester
1

Answer:

The solution of the given equation is x=\sqrt3,x=1

Step-by-step explanation:

Given : Expression  x^2-(\sqrt{3}+1)x+\sqrt3

To find : Solve by completing square?

Solution :  

The general form of quadratic equation is ax^2+bx+c=0

To convert into complete square the form is a(x+d)^2+e=0

Where, d=\frac{b}{2a} \text{ and } e=c-\frac{b^2}{4a}

Now, comparing the given equation x^2-(\sqrt{3}+1)x+\sqrt3

a=1 , b=-\sqrt{3}+1, c=\sqrt{3}    

d=\frac{b}{2a}=-\frac{\sqrt3+1}{2(1)}=-\frac{\sqrt{3}+1}{2}

e=c-\frac{b^2}{4a}=\sqrt3-\frac{(\sqrt3+1)^2}{4(1)}=\frac{\sqrt3+1}{2}

Substitute in a(x+d)^2+e=0

1(x-\frac{\sqrt{3}+1}{2})^2-\frac{\sqrt3-1}{2}=0

(x-\frac{\sqrt{3}+1}{2})^2-\frac{\sqrt3-1}{2}=0

(x-\frac{\sqrt{3}+1}{2})^2=\frac{\sqrt3-1}{2}

Root both side,

x-\frac{\sqrt{3}+1}{2}=\pm\frac{\sqrt3-1}{2}

x-\frac{\sqrt{3}+1}{2}=\frac{\sqrt3-1}{2} or x-\frac{\sqrt{3}+1}{2}=-\frac{\sqrt3-1}{2}

When we solve we get,

x=\sqrt3,x=1

Therefore, The solution of the given equation is x=\sqrt3,x=1

Similar questions