Math, asked by Tomboyish44, 1 year ago

Solve: x^2 - b^2 - = a(2x - a)

Grade 10, Quadratic Equations.

Answers

Answered by charliejaguars2002
14

Answer:

\Large\boxed{X=A+\sqrt{b^2+1}, X=A-\sqrt{b^2+1} }

Step-by-step explanation:

Given:

x²-b²-=a(2x-a)

To solve this problem, first you have to isolate by the x or a from one side of the equation.

\Large\boxed{\textnormal{SUBJECT: MATH}}

\Large\boxed{\textnormal{LESSON: SOLVE WITH QUADRATIC EQUATIONS}}

Solutions:

First, used quadratic equations formula:

\Large\boxed{\textnormal{QUADRATIC EQUATIONS FORMULA}}

Expand by using with distributive property.

\Large\boxed{\textnormal{DISTRIBUTIVE PROPERTY}}

\displaystyle A(B+C)=AB+AC

\displaystyle a(2x-a)

A=A

B=2x

C=A

\displaystyle a*2x-aa

\displaystyle 2xa-aa

\displaystyle A^2=AA

\displaystyle 2xa-a^2

Rewrite the problem down.

\displaystyle X^2-b^2-=2xa-a^2

You have to add a² from both sides.

\displaystyle x^2-b^2-+a^2=2xa-a^2+a^2

Solve.

\displaystyle x^2-b^2-+a^2=2xa

Then, subtract 2xa from both sides.

\displaystyle x^2-b^2-+a^2-2xa=2xa-2xa

Solve. (Simplify/refine/solution.)

\displaystyle x^2-2ax-b^2-1+a^2=0

A=1

B=(-2a)

C=(-b²-1+a²)

\displaystyle \frac{-(-2a)+\sqrt{(-2a)^2-4*1(-b^2-1+a^2)}}{2*1}

Solve.

\displaystyle \frac{-(-2a)+\sqrt{(-2a)^2-4*1(-b^2-1+a^2)}}{2*1}=\boxed{a+\sqrt{b^2+1}, \quad a-\sqrt{b^2+1} }

\Large\boxed{\boxed{a+\sqrt{b^2+1}, \quad a-\sqrt{b^2+1} }}

Therefore, the correct answer is x=a+√b²+1, and x=a-√b²+1.

Answered by Anonymous
68

\huge\boxed{SOLUTION}

x = a +  \sqrt{b {}^{2} + 1 }  \\ k = a -  \sqrt{b {}^{2} + 1 }

Further Explanation

According to the given question:-

x {}^{2}  - b {}^{2}  -  = (2x - a)

Now,

a(b + c) = ab + ac

a(2x - a)

(a = a)

(b = 2x)

(c = a)

(a°2x - aa)

(a {}^{2}  = aa)

(2xa - a {}^{2} )

Here. ...

 = x {}^{2}  - b {}^{2}  -  = 2x {}^{2} a {}^{2}  \\ = x {}^{2}   - b {}^{2}  -  + a {}^{2}  = 2xa - a {}^{2}  + a {}^{2}  \\  = x {}^{2}  - b {}^{2}  -  + a {}^{2}  = 2xa \\  = x {}^{2}  - b {}^{2} -  + a {}^{2}   - 2xa = 2xa - 2xa

Simplifying

x {}^{2}  - 2ax - b {}^{2}  - 1 + a {}^{2}  = 0 \\  = (a = 1) \\ =  (b = ( - 2a)) \\  = (c) = ( - b {}^{2}  - 1 + a { {}^{} }^{2}))  \\

Then,finally

 - ( - 2a) +  \sqrt{( - 2a) {}^{2}  - 4°1( - b {}^{2}1 + a {}^{2}  }  by \: 2°1

 = a +  \sqrt{b {}^{2}  + 1} .. \sqrt{b {}^{2} + 1 }

Similar questions