solve |x+2| >5
do not post irrelevant answer
Answers
Answered by
6
Answer :
x € (-∞,-7)U(3,∞)
Note :
★ Modules function / Absolute value :
• Absolute value of any real number x is denoted by |x| .
• f(x) = |x|
Modules function is defined as ;
• f(x) = x , if x ≥ 0
= -x , if x < 0
• f(x) = max {x , -x}
★ If |x| = a , then x = ± a
★ If |x| < a , then -a < x < a OR x € (a,-a) .
★ If |x| ≤ a , then -a ≤ x ≤ a OR x € [a,-a] .
★ If |x| > a , then x < -a or x > a
OR x € (-∞,-a)U(a,∞) .
★ If |x| ≥ a , then x ≤ -a or x ≥ a
OR x € (-∞,-a]U[a,∞) .
Solution :
- Given : |x + 2| > 5
- To find : x = ?
We have ,
=> |x + 2| > 5
=> x + 2 < -5 or x + 2 > 5
=> x < -5 - 2 or x > 5 - 2
=> x < -7 or x > 3
=> x € (-∞,-7) or x € (3,∞)
=> x € (-∞,-7)U(3,∞)
Hence ,
x € (-∞,-7)U(3,∞)
Similar questions