Math, asked by subu802002, 2 months ago

solve: x/2 + x/3 + x/6 = 3​​

Answers

Answered by SachinGupta01
8

\bf \underline{ \underline{\maltese\:Given} }

 \sf \implies  \dfrac{x}{2}  + \dfrac{x}{3} + \dfrac{x}{6} = 3

\bf \underline{ \underline{\maltese\:To  \: find } }

 \sf \implies  Value  \: of \:  x = \:  ?

\bf \underline{ \underline{\maltese\:Solution  } }

 \sf \implies  \dfrac{x}{2}  + \dfrac{x}{3} + \dfrac{x}{6} = 3

Find the common denominator.

 \sf \implies  \dfrac{x \times 3}{6}  + \dfrac{x \times 2}{6} + \dfrac{x}{6} = 3

Combine the numerators over common denominator.

 \sf \implies  \dfrac{x \times 3 + x \times 2 + x}{6}   = 3

Simplify each term.

 \sf \implies  \dfrac{3x +  2x + x}{6}   = 3

 \sf \implies  \dfrac{5x + x}{6}   = 3

 \sf \implies   \cancel{\dfrac{6 x}{6} }  = 3

 \sf \implies   x  = 3

Therefore,

 \sf \implies  \underline{ \boxed{  \sf    Value  \: of \:  x  \: is  \: 3 }}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\bf  \underline{ \underline{\maltese\:  Verification  } }

To verify the answer just write 3 in place of x.

 \sf \implies  \dfrac{x}{2}  + \dfrac{x}{3} + \dfrac{x}{6} = 3

 \sf \implies  \dfrac{3}{2}  + \dfrac{3}{3} + \dfrac{3}{6} = 3

Find the common denominator.

 \sf \implies  \dfrac{3 \times 3}{6}  + \dfrac{3 \times 2}{6} + \dfrac{3}{6} = 3

 \sf \implies  \dfrac{9}{6}  + \dfrac{6}{6} + \dfrac{3}{6} = 3

Combine the numerators over common denominator.

\sf \implies \dfrac{9  + 6+  3}{6} = 3

 \sf \implies   \cancel{\dfrac{18}{6}   }= 3

 \sf \implies   3= 3

LHS and RHS are equal.

 \bold{\longrightarrow} \:\large{\sf \red{Hence\:Verified\:!}}

Similar questions