Math, asked by nitingupta72, 3 months ago

solve x^2d^2y/dx^2 -3xdy/dx +4y =2x^2​

Answers

Answered by mathdude500
15

Solve the Differential equation :-

 \sf \:  {x}^{2} \dfrac{ {d}^{2}y }{ {dx}^{2} }  - 3x\dfrac{dy}{dx}  + 4y =  {2x}^{2}  -  -  - (1)

Now,

 \sf \: Put \: x =  {e}^{z}  \:  \implies \: z =  log(x)

Now,

 \sf \: As \:  D = x\dfrac{d}{dx}  \: where \: D \:  =  \: \dfrac{d}{dz}  -  -  - (2)

and

 \sf \:  {x}^{2} \dfrac{ {d}^{2} }{ {dx}^{2} }  = D( D - 1) -  -  - (3)

Substituting all these values in equation (1), we get

 \sf \: \{ D(D - 1) - 3D + 4 \}y = 2 {e}^{2z}

 \sf \: \{   {D}^{2}  - D- 3D + 4 \}y = 2 {e}^{2z}

 \sf \: \{  {D}^{2}  - 4D + 4 \}y = 2 {e}^{2z}

 \sf \:  {(D - 2)}^{2} y = 2 {e}^{2z}

Therefore, Auxiliary equation is

 \sf \:  {(D - 2)}^{2}  = 0

 \sf \:  \therefore \: D \:  = 2 \: or \: 2

So,

Complementary function,

 \sf \: C.F. = (c_1+c_2z) {e}^{2z}

 \sf \: C.F. = (c_1+c_2 log(x) ) {x}^{2}

Now,

Particular integral is,

 \sf \: P. I. = \dfrac{1}{ {(D - 2)}^{2} }  {2e}^{2z}

 \sf \: P. I. = 2z\dfrac{1}{2(D - 2)}  {e}^{2z}  \:  \:  \:  \: (case \: of \: failure)

 \sf \: P. I. =  {z}^{2}  {e}^{2z}

 \sf \: P. I. =  {x}^{2}  {(logx)}^{2}

Hence,

Complete Solution, y = C. F. + P. I.

 \therefore \:  \bf \: y \:  =  \: (c_1+c_2 log(x) ) {x}^{2} + {x}^{2}  {(logx)}^{2}

Answered by charantez234
2

Answer:

Common Solution Y= CF+PIY

Step-by-step explanation:

Attachments:
Similar questions