Solve :
x ²p + y ²q = z² .
Answers
Answer:
First thought: Maybe we can transform it somehow into one of those f(p,q)=0f(p,q)=0 form by making some substitution. Let’s think.
To begin with, we can rewrite it this way…
(xz∂z∂x)2+(yz∂z∂y)2=1(1)(1)(xz∂z∂x)2+(yz∂z∂y)2=1
We seem to be stuck. It’s time to improvise! Let’s make some substitutions…
X=logxX=logx
Y=logyY=logy
Z=logzZ=logz
Using the above substitutions, we have these relations…
∂Z∂X=xz∂z∂x∂Z∂X=xz∂z∂x
∂Z∂Y=yz∂z∂y∂Z∂Y=yz∂z∂y
Let’s rewrite equation (1)(1) in terms of X,YX,Y and ZZ
(∂Z∂X)2+(∂Z∂Y)2=1(∂Z∂X)2+(∂Z∂Y)2=1
Now we’ll let p=∂Z∂Xp=∂Z∂X and q=∂Z∂Yq=∂Z∂Y
So we have pretty little equation now…
p2+q2=1(2)(2)p2+q2=1
Let’s say the required solution of the above equation is…
Z=aX+bY+cZ=aX+bY+c
That means on partially differentiating with respect to XX and YY , we’ll have ∂Z∂X=a=p∂Z∂X=a=p and ∂Z∂Y=b=q∂Z∂Y=b=q
So from equation (2)(2) , we have…
a2+b2=1⟹b=1−a2−−−−−√a2+b2=1⟹b=1−a2
Using this value of bb , our proposed solution becomes…
Z=aX+1−a2−−−−−√Y+cZ=aX+1−a2Y+c
Finally, we undo our substitutions to get the final solution for our Partial Differential Equation.
logz=alogx+1−a2−−−−−√logy+c
Please mark as brainliest