Math, asked by Ahili11, 5 months ago

Solve x : √2x+9 - √x+1 = √x-4​

Answers

Answered by nandanikumari10
2

Answer:

4x - 4y22105? \times \frac{?}{?}

Answered by payalchatterje
1

Answer:

Required value of x is 98(3 + 2 \sqrt{2} )

Step-by-step explanation:

Given equation,

\sqrt{2x}  + 9 -  \sqrt{x}  + 1 =  \sqrt{x}  - 4

\sqrt{2}   \times \sqrt{x}  + 9 - \sqrt{x}  + 1=  \sqrt{x}  - 4

Let, \sqrt{x}  = y

So, \sqrt{2} \times  y + 9 - y + 1 = y - 4

We are separating variable and constant part,

 \sqrt{2} y - y - y =  - 4 - 1 - 9

( \sqrt{2}  - 2)y =  - 14

y = -   \frac{14}{ \sqrt{2} - 2 }

y =   \frac{14}{2 -  \sqrt{2} }  =  \frac{14(2 +  \sqrt{2)} }{(2 -  \sqrt{2})(2 +  \sqrt{2} ) }  =  \frac{14(2 +  \sqrt{2}) }{ {2}^{2} -  { \sqrt{2} }^{2}  }  =  \frac{14(2 +  \sqrt{2} )}{4 - 2}  = 7(2 +  \sqrt{2} )

Now

y =  \sqrt{x}  = 7(2 +  \sqrt{2} )

x =  {7}^{2}  {(2 +  \sqrt{2}) }^{2}  = 49(4 + 2 + 4 \sqrt{2} ) = 49(6 + 4 \sqrt{2} ) = 98(3 + 2 \sqrt{2} )

Here applied formula,

 {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

Some other important formulas of Algebra ,

a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

Similar questions