Math, asked by namujadhav8090, 1 month ago

solve (x+2y^3)dy/DX=y​

Answers

Answered by utsavshakya49
0

Answer:

setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\:(x +  {2y}^{3})\dfrac{dy}{dx} = y

can be rewritten as

\rm :\longmapsto\:\dfrac{dx}{dy}  = \dfrac{x +  {2y}^{3} }{y}

can be rewritten as

\rm :\longmapsto\:\dfrac{dx}{dy}  =\dfrac{x}{y}  +  \dfrac{{2y}^{3} }{y}

\rm :\longmapsto\:\dfrac{dx}{dy}  =\dfrac{x}{y}  +   {2y}^{2}

\rm :\longmapsto\:\dfrac{dx}{dy}   - \dfrac{x}{y}  =   {2y}^{2}

This is a Linear Differential equation,

So,

On comparing with

\red{\rm :\longmapsto\:\dfrac{dx}{dy} + px = q \:  \: where \: p \: and \: q \:  \in \: f(y)}

We get,

\rm :\longmapsto\:p \:  =  \:  -  \: \dfrac{1}{y}

and

\rm :\longmapsto\:q \:  =  \:  {2y}^{2}

So,

Integrating Factor is evaluated as

\red{\rm :\longmapsto\:IF \: =    {e} \: ^ {\displaystyle \int \rm \: pdy}}

\red{\rm :\longmapsto\:IF \: =    {e} \: ^ {\displaystyle \int \rm \:  -  \:  \frac{1}{y} dy}}

\red{\rm :\longmapsto\:IF \: =    {e} \: ^ { -  \: \displaystyle \int \rm \:  \:  \frac{1}{y} dy}}

\red{\rm :\longmapsto\:IF \: =    {e} \: ^ { -  \: logy}}

\red{\rm :\longmapsto\:IF \: =    {e} \: ^ {\: log {y}^{ - 1} }}

We know,

\boxed{ \bf{ \:  {e}^{logx} = x}}

So, using this result, we get

\red{\rm :\longmapsto\:IF =  {y}^{ - 1}}

\bf\implies \:IF = \dfrac{1}{y}

Now, Solution is given by

\rm :\longmapsto\:x \times IF = \displaystyle \int \rm \: (q \times IF) \: dy

\rm :\longmapsto\:x \times \dfrac{1}{y}  = \displaystyle \int \rm \: ( {2y}^{2} \times  \frac{1}{y}) \: dy

\rm :\longmapsto \:  \dfrac{x}{y}  = \displaystyle \int \rm \: {2y}^{}  \: dy

\rm :\longmapsto \:  \dfrac{x}{y}  = 2 \times \dfrac{ {y}^{2} }{2} + c

\rm :\longmapsto \:  \dfrac{x}{y}  =  {y}^{2}  + c

Additional Information :-

The linear differential equation of the form

\red{\rm :\longmapsto\:\dfrac{dy}{dx} + py = q \:  \: where \: p \: and \: q \:  \in \: f(x)}

Step :- 1 Integrating Factor

\red{\rm :\longmapsto\:IF \: =    {e} \: ^ {\displaystyle \int \rm \: pdx}}

Step :- 2 Solution is given by

 \red{\rm :\longmapsto\:y \times IF = \displaystyle \int \rm \: (q \times IF) \: dx}

Similar questions