solve (x+2y^3)dy/DX=y
Answers
Answer:
setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(4,0)(4,0)(5,4)\qbezier(0,0)(0,0)(1,4)\qbezier(1,4)(1,4)(5,4)\qbezier(1,4)(1,4)(4,0)\put(-0.2,-0.4){\bf B}\put(0.8,4.2){\bf A}\put(4.2,-0.4){\bf C}\put(5.2,4.2){\sf D}\end{picture}
Given Differential equation is
can be rewritten as
can be rewritten as
This is a Linear Differential equation,
So,
On comparing with
We get,
and
So,
Integrating Factor is evaluated as
We know,
So, using this result, we get
Now, Solution is given by
Additional Information :-
The linear differential equation of the form
Step :- 1 Integrating Factor
Step :- 2 Solution is given by