Solve x-3(2+x)>2(3x-1), x€{-3,-2,-1,0,1,2} also represent its solution on the number line.
Answers
solution on the number line.
We have 3x - 5 < 4
⇒ 3x - 5 + 5 < 4 + 5 (Add 5 to both sides)
⇒ 3x < 9
⇒ 3x/3 < 9/3 (Divide both sides by 3)
⇒ x < 3
So, the replacement set = {1, 2, 3, 4, 5, ...}
Therefore, the solution set = {1, 2} or S = {x : x ∈ N, x < 3}
Let us mark the solution set graphically.

Solution set is marked on the number line by dots.
2. Solve 2x + 8 ≥ 18
Here x ∈. W represent the inequation graphically
⇒ 2x + 8 - 8 ≥ 18 - 8 (Subtract 8 from both sides)
⇒ 2x ≥ 10
⇒ 2x/2 ≥ 10/2 (Divide both sides by 2)
⇒ x ≥ 5
Replacement set = {0, 1, 2, 3, 4, 5, 6, ...}
Therefore, solution set = {5, 6, 7, 8, 9, ...}
or, S = {x : x ∈ W, x ≥ 5}
Let us mark the solution set graphically.

Solution set is marked on the number line by dots. We put three more dots indicate infiniteness of the solution set.
3. Solve -3 ≤ x ≤ 4, x ∈ I
Solution:
This contains two inequations,
-3 ≤ x and x ≤ 4
Replacement set = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...}
Solution set for the inequation -3 ≤ x is -3, -2, -1, 0, 1, 2, ... i.e., S = {-3, -2, -1, 0, 1, 2, 3, ...} = P
And the solution set for the inequation x ≤ 4 is 4, 3, 2, 1, 0, -1, ... i.e., S = {..., -3, -2, -1, 0, 1, 2, 3, 4} = Q
Therefore, solution set of the given inequation = P ∩ Q
= {-3, -2, -1, 0, 1, 2, 3, 4}
or S = {x : x ∈ I, -3 ≤ x ≤ 4}
Let us represent the solution set graphically.