Math, asked by sunjavi, 1 year ago

solve x^3-26x+60=0 by cardan's method?​

Answers

Answered by luckiest1
2

\huge\bold\pink{hello!!}

HERE IS UR ANSWER

____________________❤

x³-26x+60=0

x³-26x=-60

x(x²-26)=-60

x=-60,

x²-26=-60

x²-26+60=0

x²+34=0

x=√-34

x=√34i


sunjavi: wrong answer? solve by cardan's method?
Answered by SrijanShrivastava
3

 \bf \red{To \: Solve :} \blue{values \: of \: x \: such \: that}

f(x) =  {x}^{3}  - 26x + 60 = 0

 \star  \star  \green{ \bf \underline{Solution}} \star \star

 \bf{As},  \sf{ Degree[f(x),x] = 3} \\ and, \\    \sf Coefficient [ f(x),  {x}^{2} ] = 0

 \sf \implies x \: is \: a \: binomial

NOW,

 \sf :  = x = u + v

 \sf \implies  {(u + v)}^{3}  - 26(u + v) + 60 = 0

 \sf  ( {u}^{3}  +  {v}^{3}  + 60) + (u + v)(3uv - 26) = 0

Therefore, Simultaneously:

  \sf {u}^{3}  + 60 +  {v}^{3}  = 0

 \sf \: uv =  \frac{26}{3}

Multiplying First equation by 'u³'

 \sf {u}^{6}  + 60 {u}^{3}  +  (\frac{26}{3} )^{3}  = 0

 \sf {u}^{3}  =   \frac{ - 270 \pm82 \sqrt{3} }{9}

But, as u and v are indistinguishable

 \sf\therefore  {u}^{3}  =  \frac{ - 270 + 82 \sqrt{3} }{9}  \\   \:  \:  \:  \: \sf {v}^{3}  =  \frac{ - 270 - 82 \sqrt{3} }{9}

 \sf u =   \omega _{k}   \sqrt[3]{ \frac{ - 270 + 82 \sqrt{3} }{9} }

 \sf v =  \omega _{k} ^{2}  \sqrt[3]{  \frac{ - 270 - 82 \sqrt{3} }{9}  }

OR

 \sf u =   \omega _{k}\frac{ \sqrt[3]{ - 810 + 246 \sqrt{3} } }{3}  \\  \sf v =  \omega  _{k}^{2}  \frac{ \sqrt[3]{ -  810 - 246 \sqrt{3} } }{3}

After Simplification

(The Number inside the cube roots comes out to be a perfect cube)

 \sf u =  \omega_k  \frac{   \sqrt{3}  - 9}{3} \\   \:  \:  \:  \: \sf v =  - \omega_k^2 \frac{  \sqrt{3}   + 9}{3}

Therefore,

The three solutions of the cubic equation are:

 \bf x_1 =  - 6

 \bf{ x_{2} =  3 +  } \it{i}

 \bf{x _{3}  = 3 - } \it{i}

where, i = (1)

Similar questions