Math, asked by sunjavi, 1 year ago

solve x^3-27x+60=0 by cardan's method?​

Answers

Answered by brunoconti
0

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:
Answered by SrijanShrivastava
1

 \bf \red{\underline{To \: Find :}} \blue{values \: of \: x \: such \: that}

f(x) =  {x}^{3}  - 27x + 60 = 0

 \star  \star  \green{ \bf \underline{Solution}} \star \star

 \bf{As},  \sf{ Degree[f(x),x] = 3} \\ and, \\    \sf Coefficient [ f(x),  {x}^{2} ] = 0

 \sf \implies x \: is \: a \: binomial

NOW,

 \sf :  = x = u + v

 \sf \implies  {(u + v)}^{3}  - 27(u + v) + 60 = 0

 \sf  ( {u}^{3}  +  {v}^{3}  + 60) + (u + v)(3uv - 27) = 0

Therefore, Simultaneously:

  \sf {v}^{3}  + 60 +  {u}^{3}  = 0

 \sf \: uv =  9

Multiplying First equation by 'v³'

 \sf {v}^{6}  + 60 {v}^{3}  +  (9)^{3}  = 0

 \sf  {v}^{3}  =  - 30 \pm3 \sqrt{19}

But, at the same time u and v are indistinguishable

 \sf u =  \omega _{k} \sqrt[3]{ - 30 + 3 \sqrt{19} }  \\  \sf  \: v =  \omega _{k} {}^{2}  \sqrt[3]{ - 30 - 3 \sqrt{19} }

Therefore, the three solutions are:

 \bf x_1=  \sqrt[3]{  - 30 + 3 \sqrt{19} }  +  \sqrt[3]{ - 30 -  \sqrt{19} }

 \bf x_{2,3} =  \frac{ \sqrt[3]{30 +  3\sqrt{19} } +  \sqrt[3]{30 - 3 \sqrt{19} }  }{2}   \pm   \it{i} \bf \frac{ \sqrt{3} }{2}( \sqrt[3]{30 + 3 \sqrt{19} }  -  \sqrt[3]{30 - 3 \sqrt{19} }  \: )

Similar questions