solve:x^4-6x^3+11x^2-10x+2=0,given that 2-√3 is aroot
Answers
Given : x⁴ - 6x³ + 11x² - 10x + 2 , 2-√3 is a root
To find : remaining roots
Solution:
2-√3 is a root
Hence one root would be 2 + √3
(x - ( 2-√3) )(x - (2+√3))
= ( x - 2 + √3)(x - 2 - √3)
= ( x - 2)² - (√3)²
= x² - 4x + 4 - 3
= x² - 4x + 1
x² -2x +2
x² - 4x + 1 _| x⁴ - 6x³ + 11x² - 10x + 2 |_
x⁴ - 4x³ + x²
____________
-2x³ + 10x² - 10x + 2
-2x³ +8x² - 2x
_________________
2x² - 8x + 2
2x² - 8x + 2
_______________
0
x² -2x +2 is other factor
x =(2 ± √-4)/2 = 1 ± i
Roots are
2± √3 , 1 ± i
Learn More:
If one root of the quadratic equation kx^2-3x-1=0 is 1/2 the find value ...
https://brainly.in/question/7551719
If 3 and -2 are roots of qudratic equation x^2 -mx+n=0 then find ...
https://brainly.in/question/8147388