Math, asked by ranjisettu13, 6 months ago

solve:x^4-6x^3+11x^2-10x+2=0,given that 2-√3 is aroot

Answers

Answered by amitnrw
10

Given :  x⁴ - 6x³ + 11x²  - 10x  + 2  , 2-√3 is a root

To find : remaining roots

Solution:

2-√3  is a root

Hence one root would be 2 + √3

(x - ( 2-√3) )(x - (2+√3))

= ( x - 2 + √3)(x - 2 - √3)

= ( x - 2)² - (√3)²

= x² - 4x  + 4 - 3

= x² - 4x  + 1

                       x² -2x +2

x² - 4x  + 1 _|   x⁴ - 6x³ + 11x²  - 10x  + 2  |_

                       x⁴ - 4x³  + x²

                    ____________

                            -2x³ + 10x²  - 10x  + 2

                             -2x³ +8x²  - 2x

                        _________________

                                      2x²  - 8x  + 2

                                     2x²  - 8x  + 2

                                _______________

                                            0

   x² -2x +2  is other factor

x =(2 ± √-4)/2  = 1  ± i

Roots are

2± √3   ,  1  ± i

Learn More:

If one root of the quadratic equation kx^2-3x-1=0 is 1/2 the find value ...

https://brainly.in/question/7551719

If 3 and -2 are roots of qudratic equation x^2 -mx+n=0 then find ...

https://brainly.in/question/8147388

Similar questions