Math, asked by karthisak07, 10 months ago

solve : x^4-6x^3+13x^2-24x^1+36=0 given that the equation has multiple roots.

Answers

Answered by amitnrw
3

Given : x^4-6x^3+13x^2-24x^1+36=0

{x}^{4} - 6{x}^{3} + 13{x}^{2} - 24{x}^{1} + 36 = 0

To Find : Roots

Solution:

x⁴ - 6x³ + 13x² - 24x  + 36 = 0

x = 3

=> 3⁴ - 6.3³ + 13.3² - 24.3  + 36

= 81 - 162 + 117 - 72 + 36

= 234 - 234

= 0

x - 3 is a root

           

x⁴ - 6x³ + 13x² - 24x  + 36  = (x - 3 ) (x³   - 3x² + 4x  -12 )

(x - 3 ) (x³   - 3x² + 4x  -12 ) = 0

=> x³   - 3x² + 4x  -12 = 0

3³   - 3,3² + 4.3  -12  = 0

x -3  is again a root

=>x³   - 3x² + 4x  -12 = (x - 3)(x² + 4)

(x² + 4) = 0

=> x² = - 4

=> x = ± 2i

roots are  3 , 3 ,  ± 2i

learn More:

If all roots of equation X5 – 10x4 + ax + bx2 + CX - 32 = 0 are ...

https://brainly.in/question/22308897

if alpha +beta are the roots of equation 4x²-5x+2=0 find the equation ...

https://brainly.in/question/8333453

Answered by Pixleriots
0

Answer:

Step-by-step explanation:

Equation at the end of step 1

 ((((x4)-(6•(x3)))+13x2)-24x)+36  = 0

STEP

2

:

Equation at the end of step

2

:

 ((((x4) -  (2•3x3)) +  13x2) -  24x) +  36  = 0

STEP

3

:

Polynomial Roots Calculator :

3.1    Find roots (zeroes) of :       F(x) = x4-6x3+13x2-24x+36

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  36.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,9 ,12 ,18 ,36

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        80.00    

     -2       1        -2.00        200.00    

     -3       1        -3.00        468.00    

     -4       1        -4.00        980.00    

     -6       1        -6.00        3240.00    

     -9       1        -9.00       12240.00    

     -12       1       -12.00       33300.00    

     -18       1       -18.00       144648.00    

     -36       1       -36.00       1977300.00    

     1       1        1.00        20.00    

     2       1        2.00        8.00    

     3       1        3.00        0.00      x-3

     4       1        4.00        20.00    

     6       1        6.00        360.00    

     9       1        9.00        3060.00    

     12       1        12.00       11988.00    

     18       1        18.00       73800.00    

     36       1        36.00       1415700.00    

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  x4-6x3+13x2-24x+36

can be divided with  x-3

Polynomial Long Division :

3.2    Polynomial Long Division

Dividing :  x4-6x3+13x2-24x+36

                             ("Dividend")

By         :    x-3    ("Divisor")

dividend     x4  -  6x3  +  13x2  -  24x  +  36

- divisor  * x3     x4  -  3x3            

remainder      -  3x3  +  13x2  -  24x  +  36

- divisor  * -3x2      -  3x3  +  9x2        

remainder             4x2  -  24x  +  36

- divisor  * 4x1             4x2  -  12x    

remainder              -  12x  +  36

- divisor  * -12x0              -  12x  +  36

remainder                    0

Quotient :  x3-3x2+4x-12  Remainder:  0

Polynomial Roots Calculator :

3.3    Find roots (zeroes) of :       F(x) = x3-3x2+4x-12

    See theory in step 3.1

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -12.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,12

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -20.00    

     -2       1        -2.00        -40.00    

     -3       1        -3.00        -78.00    

     -4       1        -4.00        -140.00    

     -6       1        -6.00        -360.00    

     -12       1       -12.00       -2220.00    

     1       1        1.00        -10.00    

     2       1        2.00        -8.00    

     3       1        3.00        0.00      x-3

     4       1        4.00        20.00    

     6       1        6.00        120.00    

     12       1        12.00        1332.00    

Similar questions